民用飞机平尾前缘鸟撞数值分析及试验验证

谢灿军1, 2, 童明波1, 刘 富2, 郭亚洲3, 朱书华1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 172-178.

PDF(2546 KB)
PDF(2546 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 172-178.
论文

民用飞机平尾前缘鸟撞数值分析及试验验证

  • 谢灿军1, 2, 童明波1, 刘  富2, 郭亚洲3, 朱书华1
作者信息 +

Numerical analysis and experimental verification of bird impact on civil aircraft’s horizontal tail wing leading edge

  • XIE Can-jun1,2,TONG Ming-bo1,LIU Fu2,GUO Ya-zhou3,ZHU Shu-hua1
Author information +
文章历史 +

摘要

用电子液压拉伸试验机与分离式霍普金森拉杆(SHTB)装置进行2024-T3、7075-T6铝合金材料不同应变率的拉伸试验,拟合出反映两种材料应变率强化效应的Johnson-Cook本构方程。通过SHTB动态拉伸试验获得7种铆钉的极限拉伸、剪切载荷。基于瞬态动力学软件PAM-CRASH,利用元件级材料试验获得铝合金本构方程及连接件动态失效参数,耦合光滑粒子流体动力学(SPH)方法与有限元方法建立民机平尾前缘鸟撞数值模型进行试验并验证数值计算结果。计算、试验结果的一致性表明,所建鸟撞数值计算模型合理、可靠。整个积木式试验、分析流程可为民机结构抗鸟撞设计提供有力参考。

Abstract

Tensile tests of 2024-T3 and 7075-T6 aluminum alloy under different strain rates were conducted by the electronic hydraulic testing machine and split Hopkinson tensile bar (SHTB) system. Johnson-Cook model which can reflect strain rate hardening effect. of the aluminum alloys were fitted. Limit tensile load and shear load of 7 kinds of rivet was obtained by SHTB dynamic tensile tests. By coupling Smooth Particle Hydrodynamics (SPH) method and finite element method, using the constitutive equation of aluminum alloys and dynamic failure parameters, the numerical model of bird impact on civil aircraft’s horizontal tail wing leading edge was established by utilizing the transient dynamic software PAM-CRASH. The bird impact test was performed to validate the numerical calculation result. The calculation result is consistent with the experimental result, which shows that the numerical calculation model is reasonable and reliable. The building-block experimental and analysis process provides reference for anti-bird impact design of civil aircraft structure.

关键词

鸟撞 / 数值分析 / 本构模型 / 平尾 / 试验

Key words

bird impact / numerical analysis / constitutive model / horizontal tail wing / experiment

引用本文

导出引用
谢灿军1, 2, 童明波1, 刘 富2, 郭亚洲3, 朱书华1. 民用飞机平尾前缘鸟撞数值分析及试验验证[J]. 振动与冲击, 2015, 34(14): 172-178
XIE Can-jun1,2,TONG Ming-bo1,LIU Fu2,GUO Ya-zhou3,ZHU Shu-hua1. Numerical analysis and experimental verification of bird impact on civil aircraft’s horizontal tail wing leading edge[J]. Journal of Vibration and Shock, 2015, 34(14): 172-178

参考文献

[1] Georgiadis S, Gunnion A J, Thomson R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge[J].Composite Structures,2008, 86(1/3): 258-268.
[2] Guida M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing[J]. Composite Structures, 2011, 93 (3): 1060-1071.
[3] Heimbs S. Computational methods for bird strike simulations: a review [J]. Computers and Structures, 2011, 89(23/24): 2093-2112.
[4] 刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90-93.
LIU Jun, LI Yu-long, LIU Yuan-yong. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90-93.
[5] 李娜,李玉龙,郭伟国. 3种铝合金材料动态性能极其温度相关性对比研究 [J]. 航空学报, 2008, 29(4): 903-908.
LI Na, LI Yu-long, GUO Wei-guo. Comparison of mechanical properties and their temperature dependencies for three aluminium alloys under dynamic load [J]. ACTA Aeronautica ET Astronautica Sinica, 2008, 29(4): 903-908.
[6] 王宏欣, 查晓熊. 3004铝的动态力学性能及本构模型[J]. 华中科技大学学报(自然科学), 2011, 39(5): 39-42.
WANG Hong-xin, ZHA Xiao-xiong. Dynamic mechanical behavior and constitutive model of 3004 aluminum [J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2011, 39(5):39-42.
[7] Porcaro R, Langseth M, Hannssen A G, et al. Crashworthiness of self-piercing reveted connections [J]. International Journal of Impact Engineering, 2008, 35(11): 1251-1266.
[8] Hoang N H, Hannssen A G, Langseth M, et al. Structural behaviour of aluminium self-piercing riveted joints: An experimental and numerical investigation [J]. International Journal of Solids and Structures, 2012, 49(23/24): 3211-3223.
[9] Han L, Chrysanthou A, Young K W. Mechanical behaviour of self-piercing riveted multi-layer joints under different specimen configurations[J]. Materials & Design, 2007, 28(7): 2024-2033.
[10] Pothnis J R, Perla Y, Arya H, et al. High strain rate tensile behavior of aluminum alloy 7075 T651 and IS 2062 mild steel [J]. Journal of Engineering Materials and Technology, 2011, 133(2): 1-9.
[11] 林木森,庞宝君,张伟,等. 5A06铝合金的动态本构关系实验 [J]. 爆炸与冲击, 2009, 29(3): 306-311.
LIN Mu-sen, PANG Bao-jun, ZHANG Wei, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy [J]. Explosion and Shock Waves, 2009, 29(3): 306-311.
[12] Monaghan J J, Kocharyan A. SPH simulation of multiphase flow [J]. Computer Physics Communication, 1995, 87(1/2): 225-235.
[13] McCarthy M A, Xiao J R, McCarthy C T, et al. Modeling of bird strike on an aircraft wing leading edge made from fibre met al laminates part 2: modeling of strike with SPH bird model[J]. Applied Composite Materials, 2004, 11(5): 317-340.
 

PDF(2546 KB)

Accesses

Citation

Detail

段落导航
相关文章

/