基于柔性多体动力学与流固耦合动力学理论,利用悬臂输液管Lagrange方程建立双节悬臂管流固耦合系统基座振动力学模型,进行节臂姿态、平均流速及节臂长度参数对流固耦合系统振动影响分析。结果表明,节臂姿态及长度参数变化对系统振动响应影响显著;平均流速增加使流体流动产生的激励作用增大、振动响应均值提高,对水平姿态具有较高的稳定工作流速;节臂长度参数对臂间弯矩影响显著,以臂间弯矩为控制力设计振动控制系统时应进行节臂长度优化;设计、构建输流管振动试验系统, 并通过试验验证理论模型的正确性。所建动力学模型可为节臂主动控制提供理论基础。
Abstract
Dynamic equation of the two cantilever pipes on vibration foundation is set up based on flexible multi-body dynamic theory and fluid-solid couple theory by using the Lagrange equation of cantilever pipe. Simulation analysis is carried out under different attitudes, different mean flow velocity and different pipe length parameters. The analysis results show that the pipe attitude and length parameter have significant effects on vibration response. The vibration excitation is apparently enhanced with the increase of mean flow velocity and the vibration system in the horizontal posture has the higher steady flow rate. Because the pipe length parameters have great effect on bending moment between pipes, the optimization design of pipe length should be performed in order to decrease the control force in the process of vibration control design. The test system of two cantilever pipes is designed. At the same time, the experiments are used to prove that the dynamic equation used in the paper is accuracy. It provides good theories of active control research on two cantilever pipes.
关键词
双节悬臂管 /
基座振动 /
流固耦合 /
试验研究 /
仿真分析
{{custom_keyword}} /
Key words
two cantilever pipes;vibration foundation;fluid-solid coupling analysis;experimental study /
simulation analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[ 1] Païdoussis M P.Fluid-structure interactions (slender structures and axial flow) VolⅠ[M]. London: Academic Press,1998.
[2 ] Paidoussis M P ,Deksnis E B. Articulated models of cantilevers conveying fluid: the study of a paradox[J]. Journal of Mechanical Engineering Science, 1970,12(4): 288-300.
[3 ]刘杰,戴丽,赵丽娟,等. 混凝土泵车臂架柔性多体动力学建模与仿真[J].机械工程学报,2007,43(11):131-134.
LIU Jie, DAI Li, ZHAO Li-juan,et al. Modeling and simulation of flexible multi-body dynamics of concrete pump tuck arm[J].Chinese Journal of Mechanical Engineering, 2007,43(11): 131-134.
[ 4] Cazzulani G, Ghielmetti C, Giberti H, et al. A test rig and numerical model for investigating truck mounted concrete pumps[J]. Automation in Construction, 2011,20(8):1133- 1142.
[5]黄毅,吴斌兴,王佳茜. 混凝土泵车臂架振动响应的主动控制实验研究[J]. 振动与冲击,2012,31(2): 91-94.
HUANG Yi,WU Bin-xing,WANG Jia-qian. Test for active control of boom vibration of a concrete pump truck[J]. Journal of Vibration and Shock ,2012,31(2): 91-94.
[6] Resta F, Ripamonti F, Cazzulani G, et al. Independent modal control for nonlinear flexible structures: an experimental test rig[J]. Journal of Sound and Vibration, 2010, 329(8):961-972.
[7]Bagordo G, Cazzulani G, Resta F, et al. A modal disturbance estimator for vibration suppression in nonlinear flexible structures[J]. Journal of Sound and Vibration,2011, 330(25) :6061-6069.
[8]王相兵,童水光.基于刚柔耦合的液压挖掘机机械臂非线性动力学研究[J].振动与冲击,2014,33(1):63-70.
WANG Xiang-bing,TONG Shui-guang.Nonlinear dynamical behavior analysis on rigid-flexible coupling mechanical arm of hydraulic excavator[J].Journal of Vibration and Shock,2014,33(1):63-70.
[9]陆佑方.柔性多体系统动力学[M].北京: 高等教育 社,1996:1-30,233-266.
[10]Abe A. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation[J]. Mechanism and Machine Theory,2009,44(9):1627-1639.
[11]蒙树立,熊静琪,吕志刚. 折叠式高空作业车臂架系统的动力学建模[J].噪声与振动控制,2012,32(4):63-67.
MENG Shu-li,XIONG Jing-qi,Lü Zhi-gang. Modeling of arm system of folding-boomaerial platform vehicle[J]. Noise and Vibration Control, 2012,32(4):63-67.
[12] Gorman D G, Trendafilova I, Mulholland A J,et al. Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction[J]. Journal of Sound and Vibration,2007,308:231-245.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}