救护车载PAM担架缓冲系统特性分析

孙大刚,高 蓬,宋 勇,梁培根,沈 毅

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 200-205.

PDF(1717 KB)
PDF(1717 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 200-205.
论文

救护车载PAM担架缓冲系统特性分析

  • 孙大刚,高  蓬,宋  勇,梁培根,沈  毅
作者信息 +

Characteristics analysis of pneumatic artificial muscle isolation system of  vehicle-mounted stretcher on ambulance

  • SUN Da-gang,GAO Peng,SONG Yong,LIANG Pei-gen,SHEN Yi
Author information +
文章历史 +

摘要

经对救护车担架隔振系统及动力学模型研究分析,提出气动人工肌肉(PAM)救护车担架隔振系统。建立车体-担架-分段人体振动模型,设计基于该系统的半主动神经网络PID控制器,并用Simulink对隔振系统进行性能仿真分析。仿真结果表明,与被动系统相比,采用神经网络PID控制的气动人工肌肉隔振系统对担架及人体有明显隔振效果,气动人工肌肉用于救护车担架隔振系统具有可行性。

Abstract

Based on the research and analysis of vibration isolation system and dynamics model of ambulance stretcher, a new buffer system of stretcher based on pneumatic artificial muscle is proposed. Then vibration model of vehicle-stretcher-human model is built up, and a semi-active neural network PID controller for stretcher vibration control based on pneumatic artificial muscle is designed, and the vibration isolation system is simulated by Simulation software, then the simulation results are compared. Research results show that compared with traditional system, the pneumatic artificial muscle buffer system using neural network PID control has more obvious isolation effect for stretcher and patient vibration, indicating the feasibility of using pneumatic artificial muscle in buffer system of ambulance stretcher.

关键词

救护车 / 担架 / 缓冲 / 气动人工肌肉 / BP网络控制

Key words

ambulance / stretcher / buffer / pneumatic artificial muscle / BP neural network control

引用本文

导出引用
孙大刚,高 蓬,宋 勇,梁培根,沈 毅. 救护车载PAM担架缓冲系统特性分析[J]. 振动与冲击, 2015, 34(14): 200-205
SUN Da-gang,GAO Peng,SONG Yong,LIANG Pei-gen,SHEN Yi. Characteristics analysis of pneumatic artificial muscle isolation system of  vehicle-mounted stretcher on ambulance[J]. Journal of Vibration and Shock, 2015, 34(14): 200-205

参考文献

[1]  徐新喜. 急救车生物污染防护技术与担架支架减振性能优化研究[D]. 天津:天津大学机械工程学院, 2008.
[2]  Bruzzone L E, Molfino R M. Special-purpose parallel robot for active suspension of ambulance stretchers[J]. International Journal of Robotics and Automation, 2003, 18(3): 121-130.
[3]  孙景工,任旭东,高振海,等.一种应用于救护车辆的磁流变减振器的实验研究[J].机床与液压,2007, 35(3): 54-55.
SUN Jing-gong, REN Xu-dong, GAO Zhen-hai,et al. Experimental study of a magnetorheological fluid shock absorber in ambulance[J]. Hydromechatronics Engineering, 2007, 35(3): 54-55.
[4] Ono T, Inooka H. Actively-controlled beds for ambulances[J]. International Journal of Automation and Computing, 2009, 6(1): 1-6.
[5]   祁建城,李若新,刘志国,等.救护车担架系统振动的阻尼主动控制研究[J].振动工程学报,1998, 11(2): 241-244.
QI Jian-cheng, LI Ruo-xin, LIU Zhi-guo,et al. Study on active vibration control for ambulance stretcher system based on sky-hook damper theory[J]. Journal of Vibration Engineering, 1998, 11(2):241-244.
[6]  Murata Y, Maemori K I. Optimum design of ER dampers for ambulances[J]. JSME International Journal Series C, 1999, 42(4): 838-846.
[7]  王猛. 基于 ADAMS 的急救车担架支架减振特性仿真分析与优化研究[D]. 北京:中国人民解放军军事医学科学院, 2009.
[8]   王龙辉,金英子,朱红亮,等. 七自由度气动人工肌肉机械手臂的设计及研究[J]. 浙江理工大学学报, 2012,29(1): 74-78.
WANG Long-hui, JIN Ying-zi, ZHU Hong-liang, et al. Design and research of seven degrees of freedom robotic arm driven by pneumatic artificial muscle[J].Journal of Zhejiang Sci-Tech. University,2012,29(1):74-78.
[9]   陶国良,谢建蔚,周洪. 气动人工肌肉的发展趋势与研究现状[J]. 机械工程学报, 2009, 45(10): 75-83.
TAO Guo-liang, XIE Jian-wei, ZHOU Hong. Research achievements and development trends of pneumatic artificial muscles[J]. Journal of Mechanical Engineering, 2009, 45(10): 75-83.
[10]  Ahn K K, Anh H P H. Design and implementation of an adaptive recurrent neural networks (ARNN) controller of the pneumatic artificial muscle (PAM) manipulator[J]. Mechatronics, 2009, 19(6): 816-828.
[11]  Thanh T U, Ahn K K. Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network[J]. Mechatronics, 2006, 16(9): 577-587.
[12]  隋立明,王祖温,包钢. 气动肌肉与生物肌肉的力学特性对比研究[J]. 机床与液压,2004,06:22-24.
SUI Li-ming, WANG Zu-wen, BAO Gang. A comparison of mechanical properties of pneumatic muscle with biological muscle[J]. Hydromechatronics Engineering, 2004,6:22-24.
[13]  杨钢,李宝仁,傅晓云. 气动人工肌肉系统动态特性研究[J]. 中国机械工程,2006, 17(12): 1294-1298.
YANG Gang, LI Bao-ren, FU Xiao-yun. Research on dynamic characteristics of a pneumatic muscle actuator[J]. China Mechanical Engineering, 2006, 17(12): 1294-1298.
[14]  汤小红,杨岳,彭波. 铁路卧铺客车人体振动舒适性建模与仿真[J]. 振动与冲击, 2010, 29 (5): 157-161.
TANG Xiao-hong, YANG Yue, PENG Bo. Modeling and simulation of vibration comfort of human body in a railway sleeper carriage[J]. Journal of Vibration and Shock, 2010, 29(5): 157-161.
[15]  夏均忠,马宗坡,白云川,等. 路面不平度激励模型研究现状[J]. 噪声与振动控制,2012, 32(5): 1-5.
XIA Jun-zhong, MA Zong-po, BAI Yun-chuan. State of research on model for road roughness excitation[J]. Noise and Vibration Control, 2012, 32(5): 1-5.
[16]   Sandra A K, Rao V R V, Sarkar A K. Road roughness modeling with clustered data using ANN approach[J]. International Journal of Civil & Structural Engineering, 2013, 4(1).
[17]  郑剑. 减速带激励下非线性汽车悬架系统动力学特性 研究[D]. 重庆: 重庆大学, 2010.
[18]  Khorshid E, Alkalby F, Kamal H. Measurement of whole-body vibration exposure from speed control humps[J]. Journal of Sound and Vibration, 2007, 304(3): 640-659.
[19]  王春华,唐焱. 车辆主动悬架的 BP 神经网络自适应 PID 控制[J]. 计算机仿真, 2009, 26(5): 274-277.
WANG Chun-hua, TANG Yan. Self-adaptive PID control based on Neural Network for active suspension vehicle[J]. Computer Simulation, 2009, 26(5): 274-277.
[20]  周德胜. 神经网络PID在网络控制系统中的设计和仿真[D].大连:大连理工大学,2013.
[21]  王修勇,宋璨,陈政清,等. 磁流变阻尼器的性能试验与神经网络建模[J]. 振动与冲击, 2009, 28(4): 42-46.
WANG Xiu-yong, SONG Can, CHEN Zheng-qing,et al. Test of a MR damper and its modeling using neural network[J]. Journal of Vibration and Shock, 2009, 28(4): 42-46.
[22]  Chen S, Zhang L. Optimization Tuning of PID parameters about PID controller based on BP neural network [J]. Computer Simulation, 2010, 10: 044.

PDF(1717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/