摘要
用牛顿法建立大变形下受轴向力的船舶推进轴系非线性动力学模型,并用多尺度方法求解。研究大变形
下轴向力对船舶推进轴系弯曲振动固有频率影响。结果表明,线性下轴向静推力使轴系弯曲振动固有频率降低;考虑大
变形时在几何非线性作用下轴向静推力使轴系弯曲振动固有频率增加;振动幅值较大时几何非线性效应占主导地位,使
两种效应综合后的固有频率仍有增加。该非线性效应对高阶固有频率影响更大。分析结果对船舶推进轴系设计有指导
借鉴意义。
Abstract
AnonlinearrotordynamicmodelunderaxilthrustwasestablishedbyNewtonianformuladuetolargedeformationanditwassolvedbythemethodofmultiplescales.Theeffectsofaxialforceonnaturalfrequencyoflateralvibrationofamarinepropulsionshaftingwerestudied.Theresearchshowsthatlateralnaturalfrequenciesarereducedduetoaxialforcewithoutconsiderationoflargedeformationandareincreasedduetothegeometricalnonlinear.Whenthevibrationamplitudeisbig,thegeometricalnonlinearisdominant,leadingtotheincreaseofthenaturalfrequency.The
resultalsoshowsthatthegeometricalnonlineareffectsaremuchgreaterwithragardtothehighfrequencies.Theseanalysescanbereferenceandguidancetothedesignofmarinepropulsionshafting.
关键词
轴向力 /
推进轴系 /
多尺度法 /
几何非线性 /
固有频率
{{custom_keyword}} /
Key words
axialforce /
propulsionshafting /
multiplescales /
geometricalnonlinear /
naturalfrequency
{{custom_keyword}} /
邹冬林1,2,荀振宇3,花纯利1,2,塔 娜1,2,饶柱石1,2.
大变形下轴向力对船舶推进轴系弯曲固有频率影响[J]. 振动与冲击, 2015, 34(14): 206-210
ZOUDong-lin1,2,XUNZhen-yu3,HUAChun-li1,2,TANa1,2,RAOZhu-shi1,2.
Effectofaxialforceonnaturalfrequencyoflateralvibrationofmarinepropulsionshafting[J]. Journal of Vibration and Shock, 2015, 34(14): 206-210
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]BehzadM,BastamiAR.Effectofcentrifugalforceonnaturalfrequencyoflateralvibrationofrotatingshafts[J].JournalofSoundandVibration,2004,274(3/5):985-995.
[2]Yim K, Yim J. Dynamic behaviorofoverhung rotorssubjected to axialforces[J]. InternationalJournalofPrecisionEngineeringandManufacturing,2012,13(9):1575-1580.
[3]孟浩,刘耀宗,王宁,等.轴向力对轴系弯扭耦合振动特性的影响[J].振动与冲击,2008,27(10):103-105.
MENGHao,LIUYaozong,WANGNing,etal.Influenceofaxialforceonflexuraltorsionalcoupledvibrationofashaftsystem[J].JournalofVarationandShock,2008,27(10):103-105.
[4]徐腾飞,向天宇,赵人达.变截面EulerBernoulli梁在轴力作用下固有振动的级数解[J].振动与冲击,2007,26(11):99-101.
XU Tengfei, XIANG Tianyu, ZHAO Renda. Seriessolutionofnaturalvibrationofthevariablecrosssectioneulerbernoullibeamunderaxialforce[J].JournalofVibrationand Shock,2007,26(11):99-101.
[5]阎兵,张大伟,徐安平,等.球头刀铣削过程动力学模型[J].机械工程学报,2002,38(5):22-26.
YANBing,ZHANGDawei,XUAnping,etal.Dynamicmodelingofballend milling[J]. Chinese JournalofMechanicalEngineering,2002,38(5):22-26.
[6]陈之炎.船舶推进轴系振动[M].上海:上海交通大学,1987.
[7]AsadiH,AghdamMM.Largeamplitudevibrationandpostbucklinganalysisofvariablecrosssectioncompositebeamsonnonlinearelasticfoundation[J]. InternationalJournalofMechanicalSciences,2014,79:47-55.
[8]EugeniM,DowellEH,MastroddiF.Postbucklinglongtermdynamicsofaforcednonlinearbeam:aperturbationapproach[J].JournalofSoundandVibration,2014,333(9):2617-2631.
[9]HosseiniH,GanjiDD,AbaspourM,etal.Effectofaxialforceonnaturalfrequencyoflateralvibrationofflexiblerotatingshafts[J].WorldAppliedSciencesJournal,2011,15(6):853-859.
[10]克拉夫R,彭津J.结构动力学[M].北京:高等教育出版社,2006.
[11]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
[12] 薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2008.
[13]高庆水,邓小文,张楚,等.单支撑1000MW超超临界汽轮机轴系不平衡响应分析[J].振动与冲击,2014,33(14):201-205.
GAO Qingshui, DENG Xiaowen, ZHANG Chu, etal.Unbalanceresponseof1000MW ultrasupercriticalturbinewithsinglebearingsupport[J].JournalofVibrationandShock,2014,33(14):201-205.
[14]钟一鄂,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1986.210 振动与冲击
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}