基于灰色关联度的形态滤波及滚动轴承故障诊断中应用

文 成,周传德

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 51-55.

PDF(2052 KB)
PDF(2052 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 51-55.
论文

基于灰色关联度的形态滤波及滚动轴承故障诊断中应用

  • 文  成,周传德
作者信息 +

Morphological filter based on grey relational degree and its application in rolling bearing fault diagnosis

  • WEN Cheng,ZHOU Chuan-de
Author information +
文章历史 +

摘要

针对形态滤波中结构元素尺度难以确定问题,提出利用灰色关联度最大准则选择结构元素尺度进行形态滤波新方法。以不同尺度结构元素对信号进行形态滤波,计算滤波后信号与原信号灰色关联度,借助灰色关联度评价形态滤波质量,以灰色关联度最大原则确定形态滤波所需结构元素尺度,获得特征信息。利用信号仿真分析实施过程,并用于滚动轴承故障诊断。实验结果表明,该方法能有效提取滚动轴承故障特征信息,实现故障诊断。

Abstract

The new method of selecting structural element scale used by the grey relational degree maximum criterion is presented because the structural elements scale in morphology filter is difficult to determine. In this method the signals are done morphological filtering by structural elements of different scales firstly, and then the grey relational degree of the filtering signal and the original signal is calculated, which is used to evaluate the quality of morphology filter, and finally the feature information is achieved based on the morphology filter required structure element scale determined by grey relational degree maximum principle. The implementation process of this method is analyzed by signal simulation, and this method is successfully applied to rolling bearing fault diagnosis. The experimental results show that this method can effectively extract the fault feature information of rolling bearing to realize fault diagnosis.

关键词

灰色关联度 / 形态滤波 / 结构元素 / 滚动轴承 / 故障诊断

Key words

grey relational degree / morphological filter / structure element / rolling bearing / fault diagnosis

引用本文

导出引用
文 成,周传德. 基于灰色关联度的形态滤波及滚动轴承故障诊断中应用[J]. 振动与冲击, 2015, 34(14): 51-55
WEN Cheng,ZHOU Chuan-de. Morphological filter based on grey relational degree and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2015, 34(14): 51-55

参考文献

[1] Nikolaou N G, Antoniadis I A. Application of morphological operators as envelope extractors for impulsive-type periodic signals[J]. Mechanical Systems and Signal Processing,2003,17(6) : 1147-1162.
[2] 胡爱军, 唐贵基, 安连锁. 基于数学形态学的旋转机械振动信号降噪方法[J]. 机械工程学报, 2006, 42(4): 127-130.
HU Ai-jun, TANG Gui-ji, AN Lian-suo. De-noising technique for vibration signals of rotating machinery based on mathematical morphology filter[J]. Journal of Mechanical Engineering,2006,42(4):127-130.
[3] Wang Jing, Xu Guang-hua, Zhang Qing, et al. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Signal Processing, 2009,23:236-245.
[4] 章立军,杨德斌,徐金梧,等. 基于数学形态滤波的齿轮故障特征提取方法[J]. 机械工程学报, 2007, 43(2): 71-75.
ZHANG Li-jun, YANG De-bin, XU Jin-wu, et al. Approach to extracting gear fault feature based on mathematical morphological filtering[J]. Journal of Mechanical Engineering,2007,43(2):71-75.
[5] 李豫川,伍星,迟毅林,等. 基于形态滤波和稀疏分量分析的滚动轴承故障盲分离[J]. 振动与冲击, 2011,30 (12): 170-174.
LI Yu-chuan, WU Xing, CHI Yi-lin, et al. Blind separation for rolling bearing faults based on morphological filtering and sparse component analysis[J]. Journal of Vibration and Shock,2011,30(12):170-174.
[6] 胡爱军,向玲,唐贵基,等. 基于数学形态变换的转子故障特征提取方法[J]. 机械工程学报, 2011, 47(23): 92-96.
HU Ai-jun, XIANG Ling, TANG Gui-ji, et al. Fault feature extracting method of rotating machinery based on mathematical morphology[J]. Journal of Mechanical Engineering,2011,47(23):92-96.
[7] 沈长青,谢伟达,朱忠奎,等. 基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J]. 振动与冲击, 2013, 32 (2): 39-43.
SHEN Chang-qing, Peter W. Tse, ZHU Zhong-kui, et al. Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method[J]. Journal of Vibration and Shock,2013,32(2):39-43.
[8] 沈长青,朱忠奎,孔凡让,等. 形态学滤波方法改进及其在滚动轴承故障特征提取中的应用[J]. 振动工程学报, 2012, 25(4): 468-472.
SHEN Chang-qing, ZHU Zhong-kui, KONG Fan-rang, et al. An improved morphological filtering method and its application in bearing fault feature extraction[J]. Journal of Vibration Engineering,2012,25(4):468-472.
[9] 滕明春,石林锁,王新军,等. 形态变换与峭度在轴承故障诊断中的应用[J]. 轴承, 2013(2): 44-47.
TENG Ming-chun, SHI Lin-suo, WANG Xin-jun, et al. Application of morphological transformation and kurtosis in fault diagnosis for bearings[J]. Bearing,2013(2):44-47.
[10] 邓聚龙. 灰色系统理论教程[M ]. 武汉: 华中理工大学出版社, 1990.
[11] 沈路, 周晓军, 张文斌,等. 基于形态滤波与灰色关联度的滚动轴承故障诊断[J]. 振动与冲击, 2009, 28 (11): 17-20.
SHEN Lu, ZHOU Xiao-jun, ZHANG Wen-bin, et al. Fault diagnosis of rolling element bearing based on morphological filter and grey incidence[J]. Journal of Vibration and Shock,2009,28(11):17-20.
[12] 程哲, 胡茑庆, 高经纬. 基于物理模型和修正灰色模型的行星轮系疲劳裂纹故障预测方法[J]. 机械工程学报, 2011, 47(9): 78-83.
CHENG Zhe, HU Niao-qing, GAO Jing-wei. Prognosis of fatigue crack in planetary gear sets based on physical model and modified gray theory[J]. Journal of Mechanical Engineering,2011,47(9):78-83.
[13] 杜必强, 唐贵基, 石俊杰. 旋转机械振动信号形态滤波器的设计与分析[J]. 振动与冲击, 2009, 28 (9): 79-81.
DU Bi-qiang, TANG Gui-ji, SHI Jun-jie. Design and analysis of morphological filter for vibration signals of a rotating machinery[J]. Journal of Vibration and Shock,2009,28(9):79-81.
[14] 杜必强,王松岭,唐贵基.转子系统振动信号形态滤波器的设计[J].中国机械工程学报,2008,6( 2):243-248.
DU Bi-qiang, WANG Song-ling, TANG Gui-ji. Morphological filter design for vibration signals from rotor system[J]. Chinese Journal of Construction Machinery,2008,6(2):243-248.
[15] 沈路, 周晓军, 张文斌,等.形态解调在齿轮故障特征提取中的应用[J].浙江大学学报,2010,44(8):1514- 1518
SHEN Lu, ZHOU Xiao-jun, ZHANG Wen-bin, et al. Application of morphological demodulation in gear fault feature extraction[J]. Journal of Zhejiang University, 2010,44(8):1514-1518.

PDF(2052 KB)

483

Accesses

0

Citation

Detail

段落导航
相关文章

/