基于小波变换与Lipschitz指数的桥梁损伤识别研究

余 竹1,2, 夏 禾1,殷永高2,孙敦华2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 65-69.

PDF(1836 KB)
PDF(1836 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 65-69.
论文

基于小波变换与Lipschitz指数的桥梁损伤识别研究

  • 余  竹1,2, 夏  禾1,殷永高2,孙敦华2
作者信息 +

Bridge damage identification based on wavelet transform and lipschitz exponent

  • YU Zhu1,2,XIA He1,YIN Yong-gao2, SUN Dun-hua2
Author information +
文章历史 +

摘要

针对连续小波变换与Lipschitz指数在识别信号奇异性上的优越性,以裂缝模拟桥梁损伤,提出基于小波变换与Lipschitz指数的损伤识别方法。对损伤结构位移模态进行小波变换,用小波系数灰度图及模极大值轨迹图进行损伤定位,并用Lipschitz指数评价损伤程度。理论推导裂缝梁的Lipschitz指数范围,并数值计算验证该方法识别结构裂缝损伤的有效性。考察Euler梁及Timoshenko梁、不同程度损伤、多位置损伤、稀疏测点布置及噪声测试等多种因素对损伤识别效果影响。

Abstract

The Continuous Wavelet Transform and Lipschitz exponent perform well in detecting signal singularity. With the bridge damage modeled as cracks, the damage identification method based on wavelet transform and Lipschitz exponent is proposed. With the Wavelet Transform is applied to structural displacement mode, the damage can be located by the contour plot and the locus of modulus maximum of wavelet coefficients. The range of Lipschitz exponent of cracked beam is derived theoretically. Numerical examples show that this method can identify the damage effectively. Furthermore, some influence factors such as Euler and Timoshenko beam, different damage extents, multiple damage, sparse measure points and test noise are studied.

关键词

小波变换 / Lipschitz指数 / 奇异性 / 损伤识别 / 位移模态

Key words

wavelet transform / lipschitz exponent / singularity / damage identification / displacement mode

引用本文

导出引用
余 竹1,2, 夏 禾1,殷永高2,孙敦华2. 基于小波变换与Lipschitz指数的桥梁损伤识别研究[J]. 振动与冲击, 2015, 34(14): 65-69
YU Zhu1,2,XIA He1,YIN Yong-gao2, SUN Dun-hua2. Bridge damage identification based on wavelet transform and lipschitz exponent[J]. Journal of Vibration and Shock, 2015, 34(14): 65-69

参考文献

[1] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration, 1991, 145(2):321-332.
[2] Maia M M M, Silva J M M, Sampaio R P C. Localization of damage using curvature of the frequency response functions[J]. Proceedings of IMAC, 1997, 15(2):942-946.
[3] Sun Q, Tang Y. Singularity analysis using continuous wavelet transform for bearing fault diagnois[J]. Mechanical Systems and Signal Proceeding, 2002, 16(6): 1025-1041.
[4] Liew K M, Wang Q. Application of wavelet theory for crack identification in structures[J]. Journal of Engineering Mechanics, 1998, 124(2):152-157.
[5] Deng X, Wang Q. Crack detection using spatial measurements and wavelet analysis[J]. International Journal of Fracture, 1998, 91(2):23-28.
[6] Hou Z, Noori M, St. Amand R. Wavelet-based approach for structural damage detection [J]. Eng. Mech. Div., ASCE, 2000,126(7):677-683.
[7] 邱颖,任青文,朱建华. 基于小波奇异性的梁结构损伤诊断[J]. 工程力学, 2005, 22(S):146-151.
   QIU Ying, REN Qing-wen, ZHU Jian-hua. A beam damage diagnosis based on wavelet singularity[J]. Engineering Mechanics, 2005, 22(S):146-151.
[8] 管德清,黄燕. 基于转角模态小波分析的弹性地基梁损伤识别研究[J]. 振动与冲击, 2008, 27(5):44-47.
GUAN De-qing, HUANG Yan. Damage identification of elastic foundation beams based on Wavelet Transform of rotating angle modes[J]. Journal of Vibration and Shock, 2008, 27(5):44-47.
[9] 管德清,黄燕. 基于应变小波变换的框架结构损伤识别研究[J]. 计算力学学报, 2010, 27(2):325-329.
GUAN De-qing, HUANG Yan. Damage identification of frame structure by means of wavelet analysis of strain mode[J]. Chinese Journal of Computational Mechanics, 2010, 27(2):325-329.
[10] 赵俊,张伟伟,马宏伟.移动荷载作用下简支梁的动态响应及裂纹损伤识别研究[J].振动与冲击,2011,30(6):97- 103.
ZHAO Jun, ZHANG Wei-wei, MA Hong-wei. Dynamic response and crack detection of simply supported beam under moving loads[J]. Journal of Vibration and Shock, 2011, 30(6):97-103.
[11] Hong J C, Kim Y Y, Lee H C, et al. Damage detection using Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of a beam[J]. International Journal of Solids and Structrues, 2002, 39: 1803-1816.
[12] 任宜春,易伟建. 基于小波分析的梁裂缝识别研究[J]. 计算力学学报, 2005, 22(4):399-404.
    REN Yi-chun, YI Wei-jian. Crack identification by means of the wavelet analysis[J].Chinese Journal of Computational Mechanics, 2005, 22(4):399-404.
[13] Jaffard S. Pointwise smoothness, two-microlocalization and wavelet coefficients[J]. Publications Matemmatiques, 1991,35:155-168.

PDF(1836 KB)

Accesses

Citation

Detail

段落导航
相关文章

/