完全弹性支承变截面梁动力特性半解析解

闫维明,石鲁宁,何浩祥,陈彦江

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 76-84.

PDF(2001 KB)
PDF(2001 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 76-84.
论文

完全弹性支承变截面梁动力特性半解析解

  • 闫维明,石鲁宁,何浩祥,陈彦江
作者信息 +

Semi-analytical solution of dynamic characteristics of non-uniform beams with complete elastic supports

  • YAN Wei-ming,SHI Lu-ning,HE Hao-xiang,CHEN Yan-jiang
Author information +
文章历史 +

摘要

基于Bernoulli-Euler梁理论对直接模态摄动方法进行改进,建立求解完全弹性支承变截面梁振动方程的半解析方法。改进摄动法(IPM)在等效等截面完全弹性支承梁的模态空间内将变截面简支、连续梁的变系数微分方程组转化为非线性代数方程组,获得完全弹性支承变截面梁动力特性的半解析解;推导弹性边界条件下系数Δkki的具体计算公式。算例分析表明,改进摄动法计算精度高、收敛速度快,可有效考虑弹性支承对结构动力特性影响;据振型的对称性给出完全弹性支承变截面对称梁动力特性的简便计算方法(SIPM);研究支座出现损伤对变截面简支梁桥自振频率影响。

Abstract

The mode perturbation method is been modified and the improved perturbation method (IPM) which can solve the vibration problem of non-uniform beam with complete elastic supports based on Bernoulli-Euler beam theory. In modal subspace of the uniform beam with complete elastic supports, the variable coefficient differential vibration equation of non-uniform simply supported and continuous beam with complete elastic supports is converted to nonlinear algebraic equations. The semi-analytical solution of dynamic characteristics of non-uniform beam with complete elastic supports is obtained and the formula of coefficient Δkki is been given. The example analysis indicates that the improved perturbation method not only has high precision and good convergency but also considers that elastic supports effect on dynamic characteristics. The simple calculating method (SIPM) of symmetrical beam is studied based on the symmetry of mode shapes. Bearing damage effects on dynamic characteristics of non-uniform simply supported beam bridge is been discussed. 

 

关键词

改进摄动法 / 变截面梁 / 完全弹性支承 / 自振频率 / 振型

Key words

improved perturbation method / non-uniform beam / complete elastic support / natural frequency / mode shape

引用本文

导出引用
闫维明,石鲁宁,何浩祥,陈彦江. 完全弹性支承变截面梁动力特性半解析解[J]. 振动与冲击, 2015, 34(14): 76-84
YAN Wei-ming,SHI Lu-ning,HE Hao-xiang,CHEN Yan-jiang. Semi-analytical solution of dynamic characteristics of non-uniform beams with complete elastic supports[J]. Journal of Vibration and Shock, 2015, 34(14): 76-84

参考文献

[1] Chen D W, Wu J S. The exact solution for the natural frequencies and mode shapes of non-uniform beams with multiple spring-mass systems[J].Journal of Sound and Vibration, 2002, 255(2):299-322.
[2] 卡姆克 E,著.张鸿林,译. 常微分方程手册[M]. 北京:科学出版社, 1977.
[3] Ece M C, Aydogdu M, Taskin V. Vibration of a variable cross- section beam[J]. Mechanics Research Communications, 2007,34:78-84.
[4] Tong X, Tabarrok B, Yen K Y. Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section[J]. Journal of Sound and Vibration,1995, 186(3): 821-835.
[5] Abrate S. Vibration of non-uniform rods and beams[J]. Journal of Sound and Vibration,1995, 185(4):703-716.
[6] 钱波, 岳华英. 变截面梁横向振动固有频率数值计算[J].力学与实践, 2011, 33(6):45-49.
QIAN bo, YUE Hua-ying. Numerical calculation of natural frequency of transverse vibration of non-uniform beam[J]. Mechanics in Engineering, 2011, 33(6):45-49.
[7] 徐腾飞,向天宇,赵人达. 变截面 Euler-Bernoulli梁在轴力作用下固有振动的级数解[J].振动与冲击,2007,26(11):99-101.
XU Teng-fei, XIANG Tian-yu, ZHAO Ren-da. Series solution of natural vibration of variable cross-section Euler-Bernoulli beam under axial force[J] Journal of Vibration and Shock, 2007, 26(11):99-101.
[8] Mao Qi-bo. Free vibration analysis of multiple-stepped beams by using Adomian decomposition method[J].Mathematical and Computer Modelling, 2011,54:756-764.
[9] Hsu J C, Lai H Y, Chen C K. Free vibration of non-uniform Euler-bernoulli beams with general elastically end constraints using adomian modified decomposition method[J].Journal of Sound and Vibration, 2008,318 : 965- 981.
[10] Hoskinga R J, Husaina S A, Milinazzo F. Natural flexural vibrations of a continuous beam on discrete elastic supports[J]. Journal of Sound and Vibration, 2004,272:169-185.
[11] Lou Meng-lin, Duan, Qiu-hua, Chen Gen-da. Modal perturbation method for the dynamic characteristics of Timoshenko beams[J].Shock and Vibration,2005,12:425- 434.
[12] 张怀静, 潘旦光. 变截面连续梁动力特性的半解析解法[J]. 北京科技大学学报, 2008,30(6):590-593.
ZHANG Huai-jing, PAN Dan-guang. Semi-analytic solution to dynamic characteristics of non-uniform continuous beams [J]. Journal of University of Science and Technology Beijing, 2008, 30(6):590-593.
[13] 楼梦麟,牛伟星. 复杂变截面梁的轴向自由振动分析的近似方法[J] 振动与冲击, 2002, 21(4):27-29.
LOU Meng-lin, NIU Wei-xing. approach for longitudinal free vibration of complicated beams with variable cross sections[J]. Journal of Vibration and Shock, 2002, 21(4):27-29.
[14] Clough R W, Penzien. J. Dynamics of structures (2nd Edition) [M].New York: Computers and Structures, Inc, 2004.
[15] 王正林,龚纯,何倩. 精通 MATLAB 科学计算[M]. 北京:电子工业出版社,2009.
[16] 叶茂,谭平,任珉,等. 中间带弹性支承各种边界条件连续梁模态分析[J]. 工程力学, 2010,27(9):80-85.
YE Mao, TAN Ping, REN Min, et al. Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions[J]. Engineering Mechanics, 2010,27(9):80-85.
[17] 宋殿义,蒋志刚,陈北雁. 弹性支承梁自振频率分析[J]. 江苏建筑, 2005(1):30-38.
SONG Dian-yi, JIANG Zhi-gang, CHEN Bei-yan. Natural frequency analysis of elastic support beam[J]. Jiangsu Construction, 2005(1):30-38.

PDF(2001 KB)

689

Accesses

0

Citation

Detail

段落导航
相关文章

/