GDQR求解弹性地基上输流管道的稳定性

李威;曾志松韩旭

振动与冲击 ›› 2015, Vol. 34 ›› Issue (4) : 211-216.

PDF(1751 KB)
PDF(1751 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (4) : 211-216.
论文

GDQR求解弹性地基上输流管道的稳定性

  • 李威 ,曾志松1韩旭2
作者信息 +

Stability of Pipes Conveying Fluid on an elastic foundation Based on GDQR

  • LI Wei1 ,ZENG Zhi-song1 HAN Xu2
Author information +
文章历史 +

摘要

用广义微分求积法(GDQR)研究了弹性地基上输流管道的稳定性问题。基于输流管道运动微分方程及边界条件,采用GDQR进行离散化,获得由动力方程组及边界条件合成的特征值矩阵方程。通过对相应特征值方程的具体分析,计算了左端固定、右端弹性支承下输流管道的发散失稳流速和颤振失稳流速,研究了临界失稳流速和稳定区域随两端支撑弹簧刚度、扭转弹簧刚度的变化情况,分析了质量比、双参数模型地基反力系数和剪切模量对输流管道稳定区域图的影响,得到了一些有益的结论。研究结论对于工程实践有一定的指导意义。

Abstract

Generalized Differential Quadrature Rule(GDQR)was applied to investigate the stability of a pipe conveying fluid on an elastic foundation. Based on the motion equations and boundary conditions of a pipe conveying fluid, the matrix eigenvalue equation consisted of the dynamic equations and boundary conditions was obtained after discreted by GDQR. After analyzing the corresponding eigenvalue equations,the results of critical velocity for divergence and flutter under different supporting conditions were calculated ,the effect of translational and rotational spring stiffness to critical instability velocity and stability region was discussed , meanwhile the influence of mass ratio ,reaction coefficient and shear modulus in two-parameter model to stability region were studied, some useful conclusions were obtained. The conclusion of the study could provide some useful suggestion for engineering.

关键词

广义微分求积法 / 稳定性 / 输流管道 / 临界流速

Key words

Generalized Differential Quadrature Rule (GDQR) / Stability / Pipe conveying fluid / Critical Velocity

引用本文

导出引用
李威;曾志松韩旭. GDQR求解弹性地基上输流管道的稳定性[J]. 振动与冲击, 2015, 34(4): 211-216
LI Wei;ZENG Zhi-song HAN Xu. Stability of Pipes Conveying Fluid on an elastic foundation Based on GDQR[J]. Journal of Vibration and Shock, 2015, 34(4): 211-216

PDF(1751 KB)

Accesses

Citation

Detail

段落导航
相关文章

/