EDRS在滚动轴承振动信号盲源分离中的应用

刘鲲鹏,夏均忠,白云川,吕麒鹏,郑建波

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 106-111.

PDF(1334 KB)
PDF(1334 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 106-111.
论文

EDRS在滚动轴承振动信号盲源分离中的应用

  • 刘鲲鹏,夏均忠,白云川,吕麒鹏,郑建波
作者信息 +

Application of EDRS in blind source separation of rolling element bearing vibration signal

  • LIU Kunpeng,XIA Junzhong,BAI Yunchuan,L Qipeng,ZHENG Jianbo
Author information +
文章历史 +

摘要

确定性随机分离(DRS)是经典的滚动轴承振动信号盲源分离方法,但其仅适用于处理稳速工况的信号,无法有效分离变转速下轴承信号,且该方法未考虑信号幅值波动的影响,鲁棒性较差,为此提出扩展确定性随机分离(EDRS)方法解决上述问题。应用角域重采样技术将时域变转速信号转化为角域稳态信号,减少转速变化的影响;借助Z计分模型对角域稳态信号进行归一化处理,降低信号幅值波动;从归一化处理后的信号中提取确定性成分,同时得到振动信号随机成分。仿真分析和轴承故障试验证明EDRS能够实现变转速下滚动轴承振动信号盲源分离,从随机成分中能够有效提取轴承故障特征。

Abstract

Deterministic random separation (DRS) is a classic blind source separation method of bearing signal, but it is only fit to deal with the bearing signal in steady speed while fail at completing the signal separation under variable speed condition.Meanwhile, it has less robustness because the signal amplitude value fluctuations was not considered in DRS, a method named extended deterministic random separation (EDRS) was proposed to solve the above problems.The angular domain resampling technique was applied to transform the time-domain variable-speed signal into the steady-state signal in the angular domain to reduce the influence of the rotational speed variation; the Z-scoring model was used to normalize the steady-state signal in the angular domain to decrease the signal amplitude fluctuation.After the signal was normalized, the deterministic components were extracted and the random components of the vibration signal were obtained.Simulation analysis and bearing fault test show that blind source separation of bearing signals in variable speed can be completed by EDRS, and the fault features can be extracted effectively from the random components.

关键词

滚动轴承 / 盲源分离 / 变转速 / 确定性随机分离 / 扩展确定性随机分离

Key words

Rolling Element Bearings / Blind Source Separation / Variable Speed / Deterministic Random Separation / Extended Deterministic Random Separation

引用本文

导出引用
刘鲲鹏,夏均忠,白云川,吕麒鹏,郑建波. EDRS在滚动轴承振动信号盲源分离中的应用[J]. 振动与冲击, 2019, 38(20): 106-111
LIU Kunpeng,XIA Junzhong,BAI Yunchuan,L Qipeng,ZHENG Jianbo. Application of EDRS in blind source separation of rolling element bearing vibration signal[J]. Journal of Vibration and Shock, 2019, 38(20): 106-111

参考文献

[1] 王宏超,陈进,霍柏琦等. 强抗噪时频分析方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(1):90-96.
WANG Hong-chao, CHEN Jin, HUO Bai-qi, et al. The method of strong anti-noise time-frequency analysis and its application in fault diagnosis of rolling element bearings [J]. Journal of Mechanical Engineering, 2015, 51(1):90-96.
[2] 陈向民,于德介,李蓉. 基于形态分量分析的滚动轴承故障诊断方法[J]. 振动与冲击, 2014, 33(5):132-136.
CHEN Xiang-min, YU De-jie, LI Rong. Fault diagnosis method of rolling element bearings based on morphological component analysis [J] .Journal of Vibration and Shock, 2014, 33(5): 132-136.
[3] 夏均忠,赵磊,白云川等. 基于MCKD和VMD的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2017, 36(20):78-83.
XIA Jun-zhong, ZHAO Lei, BAI Yun-chuan, et al. Feature extraction of weak fault of rolling element bearings based on MCKD and VMD [J] .Journal of Vibration and Shock, 2017,36 (20): 78-83.
[4] Bertrand A, Moonen M. Distributed Canonical Correlation Analysis in Wireless Sensor Networks with Application to Distributed Blind Source Separation [J]. IEEE Transactions on Signal Processing, 2015, 63(18):4800-4813.
[5] Abboud D, Antoni J, Sieg-Zieba S, et al. Deterministic-random separation in nonstationary regime [J]. Journal of Sound and Vibration, 2016, 362:305-326.
[6] Peeters C, Guillaume P, Helsen J. A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection [J]. Mechanical Systems and Signal Processing, 2017, 91:354-381.
[7] Urbanek J, Barszcz T, Strączkiewicz M, et al. Normalization of vibration signals generated under highly varying speed and load with application to signal separation [J]. Mechanical Systems and Signal Processing, 2017, 82:13-31.
[8] 程卫东,刘东东,赵德尊. 基于线调频小波路径追踪的滚动轴承故障特征提取[J]. 振动与冲击, 2017, 36(13):155-160.
CHENG Wei-dong, LIU Dong-dong, ZHAO De-zun. Fault feature extraction of rolling element bearings based on Line FM Wavelet Path Tracing [J] .Journal of Vibration and Shock, 2017, 36 (13): 155-160.
[9] Urbanek J, Barszcz T, Antoni J. Integrated modulation intensity distribution as a practical tool for condition monitoring[J]. Applied Acoustics, 2014, 77(3): 184-194.
[10] Rai A, Upadhyay S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings [J]. Tribology International, 2016, 96:289-306.
[11] 赵明. 变转速下机械动态信息的自适应提取与状态评估[D].西安交通大学, 2017.
ZHAO Ming. Variable speed mechanical dynamic information adaptive extraction and state assessment [D]. Xi'an Jiaotong University, 2017.
[12] Braun S. The synchronous (time domain) average revisited[J]. Mechanical Systems and Signal Processing, 2011, 25(4):1087-1102.
[13] 沈国际,陶利民,徐永成. 时域同步平均的相位误差累积效应研究[J]. 振动工程学报, 2007, 20(4):335-339.
SHEN Guo-ji, TAO Li-min, XU Yong-cheng. Research on accumulation effect of Phase Errors in Time Domain Synchronization Average[J]. Journal of Vibration Engineering, 2007, 20(4):335-339.
[14] Almamy J, Aston J, Ngwa L N. An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK[J]. Journal of Corporate Finance, 2016, 36:278-285.
[15] Mishra C, Samantaray A K, Chakraborty G. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate[J]. Mechanical Systems and Signal Processing, 2016, 72-73:206-222.
[16] Yentes J M, Hunt N, Schmid K K, et al. The appropriate use of approximate entropy and sample entropy with short data sets[J]. Annals of Biomedical Engineering, 2013, 41(2):349-365.
[17] Abboud D, Antoni J. Order-frequency analysis of machine signals[J]. Mechanical Systems and Signal Processing, 2017, 87:229-258.
[18] 夏均忠,汪治安,陈成法等. 基于阶频谱相关组合切片的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37(20): 7-.
XIA Jun-zhong, WANG Zhi-an, CHEN Cheng-fa, et al. Research on fault feature extraction of rolling bearing based on combined slice of order-frequency spectral correlation. Journal of Vibration and Shock, 2018, 37(20): 7-.
[19] Yang Y, Nagarajaiah S. Blind identification of damage in time-varying systems using independent component analysis with wavelet transform[J]. Mechanical Systems and Signal Processing, 2014, 47(1–2):3-20.

PDF(1334 KB)

Accesses

Citation

Detail

段落导航
相关文章

/