陈君航1,2,彭延峰1,2,李学军1,2,韩清铠3,李鸿光1,4
振动与冲击. 2019, 38(20): 31-37.
自适应最稀疏窄带分解(Adaptive Sparsest Narrow-band Decomposition,ASNBD)是在包含内禀模态函数(Intrinsic Mode Functions, IMF )的过完备字典库中搜索信号的最稀疏解,将信号分解转化为优化问题, 但在强噪声干扰时计算精度仍有待提高。因此在结合了互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)算法,得到了新的互补集合自适应最稀疏窄带分解(Complementary Ensemble Adaptive Sparsest Narrow-band Decomposition,CE-ASNBD)方法。此方法是加入成对符号相反的白噪声到目标信号,从而减小重构误差,在对滤波器参数的优化过程中实现信号的自适应分解。对仿真和实验数据的分析结果表明,该方法在抑制模态混淆、端点效应、性能、提高分量的正交性和准确性等方面要优于CEEMD和ASNBD方法,并能有效应用于滚动轴承故障诊断。