遥测振动信号包含大量反映飞行器试验过程中的状态特征信息,具有非线性、非平稳性、强噪声等特点,如何提取反映系统运行状态的微弱非线性特征直接关系到飞行状态监测和故障诊断的准确性,针对这一问题,提出一种基于双数复小波的多尺度噪声调节随机共振分析方法,充分考虑多尺度带限噪声对非线性随机共振的影响,利用多尺度噪声调节和樽海鞘群算法优化非线性随机共振,对遥测振动信号的微弱特征信息进行增强,仿真和实测数据实验结果表明该方法的有效性。
Abstract
Telemetry vibration signal contains a great deal of information that reflects the status of aircrafts during test, and has characteristics of non-linear, non-stationary, strong noise.How to extract the weak nonlinear features which reflect the operating status of the system is directly related to the accuracy of flight status monitoring and fault diagnosis.To solve this problem,a multi-scale noise tuning stochastic resonance analysis method based on double tree complex wavelets was proposed.The impact of multi-scale band limited noise on nonlinear stochastic resonance was fully considered, and a multi-scale noise tuning and salp-swarm-algorithm was used to optimize the iteration of nonlinear stochastic resonance,so the weak feature information of telemetry vibration signal was enhanced.Simulation and experimental results show the effectiveness of the method.
关键词
遥测振动信号 /
双树复小波 /
多尺度分析 /
随机共振 /
樽海鞘群算法
{{custom_keyword}} /
Key words
Telemetry vibration signal /
Double-tree complex wavelet /
Multi-scale analysis /
Stochastic resonance /
Salp-Swarm-Algorithm
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘学. 虚部噪声辅助LCD方法及其在遥测振动信号处理中的应用[J].振动与冲击,2017,36(12): 1-6.
LIU Xue. An image noise assisted local characteristic scale decomposition method and its application in telemetry vibration signal processing[J].Journal of Vibration and Shock,2017, 36(12): 1-6.
[2] Ouyang Gaoxiang, Li Jing, Liu Xianzeng. Dynamic characteristics of Absence EEG Recordings with Multi-Scale Permutation Entropy Analysis[J]. Epilepsy Research,2013,104:246-252.
[3] Yan R, Gao R X. Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis[J]. Tribology International, 2009, 42(2): 293-302.
[4] J.Wang, Q. He, F. Kong. Adaptive multi-scale noise tuning stochastic resonance for health diagnosis of rolling element bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(2): 564-577.
[5] 张雷,宋爱国. 随机共振在信号处理中应用研究的回顾与展望[J].电子学报, 2009, 37(4),811-818.
ZHANG Lei, SONG Aiguo. Development and prospect of stochastic resonance in signal processing[J]. Acta Electronic Sinica, 2009, 37(4), 811-818.
[6] Tan J, Chen X, Wang J, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009,23(3): 811-822.
[7] Leng Y G, Leng Y S, Wang T Y, et al. Numerical analysis and engineering application of parameters to stochastic resonance[J]. Journal of Sound and Vibration, 2006, 292:788-801.
[8] J.Wang, Q. He, F. Kong. Multi-scale envelope manifold for enhanced diagnosis of rotating machines[J]. Mechanical Systems and Signal Processing, 2015,52-53, 376-392.
[9] Zhang L, Song A G, He J. Logic signals driven stochastic resonance in bistable dynamics subjected to 1/f noise floor[J]. The European Physical Journal B, 2011, 80(2): 147-153.
[10] Wang Z, Qiao Z, Zhou L, et al. Array–enhanced logical stochastic resonance subject to colored noise[J]. Chinese Journal of Physics, 2017, 55(2):252-259.
[11] Nozaki D, Mar D J, Grigg P, et al. Effects of colored noise on stochastic resonance in sensory neurons[J]. Physical Review Letters, 1999, 82(11): 2402-2405.
[12] Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion[J]. IEEE Transactions on Information Theory,1992, 38(2): 910-917.
[13] Selesnick I W, Baraniuk R G, Kingsbury N C. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22 (6): 123-151.
[14] David H W, William G M. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67-82.
[15] Seyedali M, Amir H. G, Seyedeh Z M, et al. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 1(114): 163-191.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}