非线性黏滞阻尼器性能试验

苏何先1,2,潘文1,2,兰香1,2,杨晓东1,2,白羽1,2,张兴仙3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 61-69.

PDF(2245 KB)
PDF(2245 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 61-69.
论文

非线性黏滞阻尼器性能试验

  • 苏何先1,2,潘文1,2,兰香1,2,杨晓东1,2,白羽1,2,张兴仙3
作者信息 +

A study on the performance of nonlinear viscous damper testing

  • SU Hexian1,2,PAN Wen1,2,LAN Xiang1,2,YANG Xiao-dong1,2,BAI Yu1,2,ZHANG Xingxian3
Author information +
文章历史 +

摘要

非线性黏滞阻尼器性能试验是控制其质量的重要手段,而我国非线性黏滞阻尼器性能测试标准的部分技术规定尚需进一步明确和细化。针对性能参数C、α确定、滞回曲线面积评定及慢速试验实施等争议较多的问题,分别从测试技术和数据处理两方面进行探索研究。通过对工程常用非线性黏滞阻尼器开展性能试验,明确了性能参数C、α的数据处理方案,统一了地震疲劳性能试验评定滞回曲线面积的技术规定,细化了慢速试验实施的技术要求。论文研究成果可供非线性黏滞阻尼器性能试验技术标准完善参考。

Abstract

Performance test on non-linear viscous damper is an essential way to assess its performance.However, part of the technique provisions in the codes of practice associated with performance test on non-linear viscous damper has not been specified and detailed.There are still a few controversial issues of determining the performance parameters C and α, assessing the area of hysteresis loop, conducting low-velocity test, etc.In view of these, this study examined both the associated test technique and data processing approaches.Based on a series of test on the typical nonlinear viscous damper in engineering practice, a data processing scheme was determined for the performance parameters C and α.The technique provision about assessing the area of hysteresis loop and conducting low-velocity test was then specified.The results of this study will provide guidance for improving the technique provisions for assessing the performance of nonlinear viscous damper. 

关键词

非线性黏滞阻尼器 / 性能试验 / 性能参数 / 耗能公式 / 滞回曲线

Key words

nonlinear viscous damper / performance test / performance parameters / energy consumption formula / hysteresis loop

引用本文

导出引用
苏何先1,2,潘文1,2,兰香1,2,杨晓东1,2,白羽1,2,张兴仙3. 非线性黏滞阻尼器性能试验[J]. 振动与冲击, 2019, 38(20): 61-69
SU Hexian1,2,PAN Wen1,2,LAN Xiang1,2,YANG Xiao-dong1,2,BAI Yu1,2,ZHANG Xingxian3. A study on the performance of nonlinear viscous damper testing[J]. Journal of Vibration and Shock, 2019, 38(20): 61-69

参考文献

[1] 周云, 徐彤. 耗能减震技术的回顾与前瞻[J]. 力学与实践, 2000, 22(5): 1-7.
ZHOU Yu, XU Tong. The state of the art and the prospect of seismic energy dissipation technology[J].Mechanics In Engineering, 2000, 22(5): 1-7.
[2] 叶正强, 李爱群, 程文瀼, 等. 采用粘滞流体阻尼器的工程结构减振设计研究[J]. 建筑结构学报, 2001, 22(4): 61-66.
YE Zheng-qiang, LI Ai-qun, CHENG Wen-rang, et al. Study on vibration energy dissipation design of structures with fluid viscous dampers[J]. Journal of Building Structures, 2001, 22(4): 61-66.
[3] 周云, 邓雪松, 汤统壁, 等. 中国(大陆)耗能减震技术理论研究、应用的回顾与前瞻[J]. 工程抗震与加固改造, 2006, 28(6): 1-15.
ZHOU Yu, DENG Xue-song, TANG Tong-bi, et al. State of the art and prospect of energy dissipation technology in China mainland[J].Earthquake Resistant Engineering and Retrofitting, 2006, 28(6): 1-15.(in Chinese)
[4] M. C. Constantinou, M. D. Symans. Seismic response of structures with supplemental damping[J]. The Structural Design of Tall Buildings, 1993, 2(2): 77-92.
[5] 翁大根, 张超, 彭林海, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击, 2012, 31(21): 80-88.
WENG Da-gen, ZHANG Chao, LU Xi-lin, et al. Practical design procedure for a energy-dissipated structure with viscous dampers[J]. Journal of Vibration and Shock, 2012, 31(21): 80-88.
[6] 翁大根, 卢著辉, 徐斌, 等. 粘滞阻尼器力学性能试验研究[J]. 世界地震工程, 2002, 18(4): 30-34.
WENG Da-gen, LU Zhu-hui, XU Bin, et al. The experimental study on property of energy dissipation of viscous liquid damper[J]. World Earthquake Engineering, 2002, 18(4): 30-34.
[7] 叶正强, 李爱群, 徐幼麟. 工程结构粘滞流体阻尼器减振新技术及其应用[J]. 东南大学学报(自然科学版), 2002, 32(3): 466-473.
YE Zheng-giang, LI Ai-qun, XU You-Iin. Fluid viscous damper technology and its engineering application for structural vibration energy dissipation[J]. Journal of Southeast University(NaturaI Science Edition), 2002, 32(3): 466-473.
[8] 黄镇, 李爱群. 新型黏滞阻尼器原理与试验研究[J]. 土木工程学报, 2009, 42(6): 61-65.
HUANG Zhen, LI Ai-qun. Experimental study on a new type of viscous damper[J]. China Civil Engineering Journal, 2009, 42(6): 61-65.
[9] 周云, 张敏, 吕继楠, 等. 新型黏滞阻尼器的力学性能试验研究[J]. 土木工程学报, 2013, 46(1): 8-15.
ZHOU Yun, ZHANG Min, LU Ji-nan, et al. Experimental study on mechanical property of viscous damper[J]. China Civil Engineering Journal, 2013, 46(1): 8-15.
[10] 徐校春, 徐斌, 周红卫. 高速、大行程和大吨位黏滞阻尼器的技术关键与应用[J]. 工程抗震与加固改造, 2012, 34(6): 74-79.
XU Xiao-chun,XU Bin,ZHOU Hong-wei. Application and key technologies of the viscous damper with high-speed、large-stroke and large-tonnage[J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(6): 74-79.
[11] 陈永祁. 工程结构用液体黏滞阻尼器的漏油原因分析[J]. 钢结构, 2008, 23(9): 53-58.
CHEN Yong-qi. Leaking analysis of fluid viscous damper for engineering structure[J]. Steel Construction, 2008, 23(9): 54-58.
[12] 张敏, 汪大洋, 耿鹏飞. 黏滞阻尼器在实际工程中的应用研究[J]. 土木工程学报, 2013, 46(增刊1): 45-50.
ZHANG Min, WANG Da-yang, GENG Peng-fei. Development of a new type of viscous damper and its application in practical engineering[J]. China Civil Engineering Journal, 2013, 46(Suppl.1): 45-50
[13] 陈永祁, 马良喆. 大型桥梁用液体黏滞阻尼器的耐久性研究[J]. 工程抗震与加固改造, 2017, 39(1): 109-115.
CHEN Yong-qi, MA Liang-zhe. Research on durability of liquid viscous dampers for large bridges[J].  Earthquake Resistant Engineering and Retrofitting, 2017, 39(1): 109-115.
[14] 朱冬飞. 黏滞阻尼器失效分析及其对结构性能影响研究[D]. 广州: 广州大学, 2016.
Zhu Dong-fei. Study on the failure analysis of viscous damper and the influence on the structural performance[D]. Guangzhou: Guangzhou University, 2016.
[15] Cao M, Tang H, Funaki N, et a1. Study on a real 8F steel building with oil damper damaged during the 2011 Great East Japan Earthquak[C]. 15th World Conference on Earthquehe Engineering, Lisbon, Portu-gal, 2012.
[16] 建筑消能阻尼器:JG/T-209-2012[S]. 北京: 中国建筑工业出版社, 2012.
[17] 建筑消能减震技术规程:JGJ 297-2013[S].北京:中国建筑工业出版社,2013.
[18] M. C. Constantinou, T. T. Soong, G. F. Dargush. Passive energy dissipation systems for structural design and retrofit[R]. MCEER-98- MN01.
[19] 潘鹏, 叶烈平, 钱稼茹, 等. 建筑结构消能减震设计与方案[M] . 清华大学出版社,2014,15-17.
[20] 周云. 粘滞阻尼器减震结构设计理论与应用[M]. 武汉理工大学出版社,2013, 15-24.
[21] 郭畅, 武一民, 付强, 等. 粘滞阻尼器模型修正及关键参数的仿真研究[J]. 液压与气动,2017(12): 101-106.
GUO Chang, WU Yi-min, FU Qiang. Adjustment of viscous damper model and simulation of key parameters[J]. Chinese Hydraulics & Pneumatics, 2017(12): 101-106.
[22] UNI EN 15129—Anti-Seismic Devices[S]. European Committee for Standardization, Bruxelles, Belgium, 2009.

PDF(2245 KB)

Accesses

Citation

Detail

段落导航
相关文章

/