1. 潘宏侠, 都衡,马春茂, 局域波信息熵在高速自动机故障诊断中的应用[J]. 振动.测试与诊断, 2015(6): p. 1159-1164.
PAN Hongxia, DU Heng, MA Chunmao, High-speed automaton fault diagnosis based on local wave and information entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2015(6): p. 1159-1164.
2. 潘宏侠, 兰海龙,任海峰, 基于局域波降噪和双谱分析的自动机故障诊断研究[J]. 兵工学报, 2014. 35(7): p. 1077-1082.
PAN Hongxia, LAN Hailong, REN Haifeng, Fault diagnosis for automata based on local wave noise
reduction and bispectral analysis[J]. Acta Armamentarii, 2014. 35(7): p. 1077-1082.
3. 任海锋,潘宏侠, 基于多分形特征的枪械自动机裂纹故障诊断[J]. 兵工学报, 2018. 39(3): p. 457-462.
Ren Haifeng, PAN Hongxia, Crack fault diagnosis of gun automatic mechanism based on multifractal features[J]. Acta Armamentarii, 2018. 39(3): p. 457-462.
4. 邓士杰, 唐力伟,张晓涛, 邻域自适应增量式 PCA-LPP 在齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017. 36(14): p. 111-115.
DENG Shijie, TANG Liwei, ZHANG Xiaotao, Gear fault diagnosis based on an adaptive neighborhood incremental PCA-LPP manifold learning algorithm[J]. Journal of Vibration and Shock, 2017. 36(14): p. 111-115.
5. 李锋, 汤宝平,郭胤, Laplacian 双联最小二乘支持向量机用于早期故障诊断[J]. 振动与冲击, 2017. 36(16): p. 85-92.
LI Feng, TANG Baoping, Guo Yin, Early fault diagnosis using Laplacian twin least squares support vector machine[J]. Journal of Vibration and Shock, 2017. 36(14): p. 111-115.
6. YU J, Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models[J]. Mechanical Systems and Signal Processing, 2011. 25(7): p. 2573-2588.
7. LU C, CHEN J, HONG R, et al., Degradation trend estimation of slewing bearing based on LSSVM model[J]. Mechanical Systems and Signal Processing, 2016. 76: p. 353-366.
8. ŽVOKELJ M, ZUPAN S,PREBIL I, EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis[J]. Journal of Sound and Vibration, 2016. 370: p. 394-423.
9. YU J, Local and nonlocal preserving projection for bearing defect classification and performance assessment[J]. IEEE Transactions on Industrial Electronics, 2012. 59(5): p. 2363-2376.
10. WU J, WU C, CAO S, et al., Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines[J]. IEEE Transactions on Industrial Electronics, 2019. 66(1): p. 529-539.
11. RUIZ-C RCEL C, CAO Y, MBA D, et al., Statistical process monitoring of a multiphase flow facility[J]. Control Engineering Practice, 2015. 42: p. 74-88.
12. PILARIO K E S,CAO Y, Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018. 14(12): p. 5308-5315.
13. WANG C, KEMAO Q,DA F, Regenerated phase-shifted sinusoid-assisted empirical mode decomposition[J]. IEEE Signal Processing Letters, 2016. 23(4): p. 556-560.
14. RUIZ-C RCEL C, LAO L, CAO Y, et al., Canonical variate analysis for performance degradation under faulty conditions[J]. Control Engineering Practice, 2016. 54: p. 70-80.
15. ODIOWEI P-E P,CAO Y, Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010. 6(1): p. 36-45.