磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析

张广,汪辉兴, 王炅

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 172-180.

PDF(2475 KB)
PDF(2475 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 172-180.
论文

磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析

  • 张广,汪辉兴, 王炅
作者信息 +

Analysis of Damping damping Characteristics characteristics of Magnetorheological magnetorheological Damper dampers for the Aartillery Recoil recoil during Bore bore Period period

  • ZHANG Guang, WANG Huixing, WANG Jiong
Author information +
文章历史 +

摘要

磁流变胶(MRG)与磁流变液(MRF)相比具有一定的抗沉降性和超长的稳定性。因此,MRG非常适用于像火炮等在和平时期长时间储藏后其各方面性能仍能满足作战要求的一类武器的反后坐应用中。为了深入研究MRG微观磁-力学特性对阻尼器宏观输出阻尼力学影响的机理,建立了库埃特(Couette)剪切流动和泊肃叶(Poiseuille)压力流动组成的混合流动模式的平行板模型;对阻尼器输出阻尼展开理论分析,最后利用MRG-70力学参数对阻尼器应用在火炮反后坐炮膛时期的可控性展开初步分析。分析结果表明:阻尼器的阻尼系数随MRG-70的动力粘度 、活塞有效工作截面积 、磁极长度 以及Bingham系数 的增大而增大;而随阻尼通道 轴宽度 的二次方及屈服前柱塞流动 轴方向无量纲宽度 增大而减小。磁流变阻尼器对火炮后坐炮膛时期具有可控性,且在能量输入非常小(0-131mT)的情况下能达到较宽的可控范围。

Abstract

MR Gel (MRG) has a certain anti settlement and long stability compared with MRF.Therefore, MRG is very suitable for recoil applications of a class of weapons, such as artillery, which can still meet the operation requirements after long time storage in peacetime.In order to study the influence of the mechanism of the micro magneto-mechanical properties of MRG on the damping mechanics of the macro-scopical output of the dampers, a parallel plate model for the mixed flow pattern of Couette shear flow and Poiseuille pressure flow was established.The theoretical analysis of the damper output damping was carried out.Finally, the controllability of the damper was analyzed by MRG-70 mechanical parameters.The results of the analysis shows that: the damping coefficient of the damper increases with dynamic viscosity, the effective working area of the piston, the length of the magnetic pole and the Bingham coefficient; in contrast, it decreases with the square of the width of the damped channel and the dimensionless width of the pre-yield plunger.MR damper was controllable to recoil at the beginning of the process of bore period, and the very small energy input (0-131 mT) can achieve a wide controllable range.

关键词

磁流变胶 / 反后坐 / 阻尼系数 / 混合流动

Key words

MR gel / reverse recoil / damping coefficient / mixed flow

引用本文

导出引用
张广,汪辉兴, 王炅. 磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析[J]. 振动与冲击, 2019, 38(20): 172-180
ZHANG Guang, WANG Huixing, WANG Jiong. Analysis of Damping damping Characteristics characteristics of Magnetorheological magnetorheological Damper dampers for the Aartillery Recoil recoil during Bore bore Period period[J]. Journal of Vibration and Shock, 2019, 38(20): 172-180

参考文献

[1] Pang H, Xuan S, Sun C, et al. A novel energy absorber based on the magnetorheological gel[J]. Smart Materials & Structures, 2017, 26(10).
[2] Yang P, Yu M, Fu J, et al. The damping behavior of magnetorheological gel based on polyurethane matrix[J]. Polymer Composites, 2015, 38(7):1248-1258.
[3] Yang P, Yu M, Fu J. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel[J]. Journal of Nanoparticle Research, 2016, 18(3):61.
[4] Shin B C, Yoon J H, Kim Y K, et al. A feasibility study of designing a tunable vibration absorber using stiffness variable magnetorheological gel[C]// IEEE International Conference on Advanced Intelligent Mechatronics. IEEE, 2015:1384-1387.
[5] Guo F, Cheng-Bin D U, Guo-Jun Y U. A new magnetorheological composite gels and its controllable rheological behavior[J]. Journal of Magnetic Materials & Devices, 2015.
[6] Liu Y D, Choi H J. Magnetorheology of core–shell typed dual-coated carbonyl iron particle fabricated by a sol–gel and self-assembly process[J]. Materials Research Bulletin, 2015, 69:92-97.
[7] Xu Y. The energy dissipation behaviors of magneto-sensitive polymer gel under cyclic shear loading[J]. Materials Letters, 2015, 158:406-408.
[8] An H N, Sun B, Picken S J, et al. Long time response of soft magnetorheological gels.[J]. Journal of Physical Chemistry B, 2012, 116(15):4702.
[9] 鞠锐,廖昌荣,周治江,唐锐等.单筒充气型轿车磁流变液减振器研究[J].振动与冲击,2014,33(19):86-92.
JU Rui, LIAO Chang-rong, ZHOU Zhi-jiang, TANG Rui and so on. The magnetorheological fluid damper of single cylinder inflatable car study [J]. Vibration and shock, 2014,33 (19): 86-92.
[10] 石峰,戴一帆,彭小强,王卓.磁流变抛光消除磨削亚表面损伤层新工艺[J].光学精密工程,2010,18(1): 162-169.
SHI Feng, DAI Yi-fan, PENG Xiao-qiang, WANG Zhuo. Magnetorheological polishing removal of grinding subsurface damage layer new technology [J]. Optical precision engineering, 2010,18 (1): 162-169.
[11] Yin X, Guo S, Xiao N, et al. Safety Operation Consciousness Realization of a MR Fluids-based Novel Haptic Interface for Teleoperated Catheter Minimally Invasive Neuro Surgery[J]. 2016, 21(2):1-1.
[12] 贾玉红,武晓娟.磁流变缓冲器在起落架上的应用[J]. 飞机设计,2007(4):41-45.
JIA Yu-hong, Wu XIAO-juan. The application of the magnetorheological buffer on the landing gear [J]. Aircraft design, 2007 (4): 41-45.
[13] 侯保林. 磁流体特性对磁流变火炮后坐阻尼器性能的影响[J]. 爆炸与冲击, 2006, 26(3):245-249.
HOU Bao-lin. The effect of magnetic fluid characteristics on the performance of the recoil damper of the magnetorheological artillery [J]. Explosion and impact, 2006, 26 (3): 245-249.
[14] An H, Picken S J, Mendes E. Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields[J]. Soft Matter, 2010, 6(18): 4497-4503.
[15] 胡红生, 王炅, 李延成. 火炮磁流变后坐阻尼器的设计与磁路分析[J]. 弹道学报, 2009, 21(2): 78-82.
HU Hong-sheng, WANG Jiong, LI Yan-cheng, et al. Design and magnetic circuit analysis of gun magneto rheological recoil damper [J]. Journal of ballistics, 2009, 21 (2): 78-82.
[16] 胡红生, 王炅, 蒋学争, 等. 火炮磁流变后坐阻尼器的设计与可控性分析[J]. 振动与冲击, 2010, 2: 184-188.
HU Hongsheng, WANG Jiong, JIANG Xue-zheng, et al. Design and controllability analysis of a gun magnetorheological recoil damper[J]. Vibration and Shock, 2010, 29(2): 184-188.
[17] Ahmadian M, Poynor J C. An evaluation of magneto rheological dampers for controlling gun recoil dynamics[J]. Shock and Vibration, 2001, 8(3-4): 147-155.
[18] 王炅, 黄文良, 陆静. 磁流变阻尼器动力学模型及其应用[J]. 弹道学报, 2003, 15(1):46-50.
WANG Jiong, HUANG Wen-liang, LU Jing. The dynamic model of magnetorheological damper and its application [J]. Journal of ballistics, 2003, 15 (1): 46-50.
[19] 李延成, 王炅, 钱林方. 冲击载荷下磁流变减振器的动态特性研究[J]. 弹箭与制导学报, 2005, 25(s8):592-594.
LI Yan-cheng, WANG Jiong, Qian Fang Lin. Research on dynamic characteristics of magnetorheological shock absorber under impact load [J]. Journal of missile and guidance, 2005, 25(s8):592-594.
[20] 侯保林. 某火炮磁流变缓冲阻尼器的设计与分析[J]. 兵工学报, 2006, 27(4):613-616.
HOU Bao-lin. Design and analysis of an artillery magnetorheological buffer damper [J]. Journal of military engineering, 2006, 27(4):613-616.
[21] 张莉洁, 常家东, 王炅,等. 磁流变冲击后坐控制系统试验研究[J]. 振动与冲击, 2014, 33(22):115-120.
ZHANG Li-jie, CHANG Jia-dong, Wang Kyung, et al. The test of the Magnetorheological Shock recoil control system [J]. Vibration and shock, 2014, 33 (22): 115-120.
[22] 欧阳青, 李赵春, 郑佳佳,等. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5):961-968.
OUYANG Qing, LI Zhao-chun, ZHENG Jia-jia, et al. Analysis of controllability of multi - order parallel magnetorheological buffer [J]. Journal of Zhejiang University (Engineering Edition), 2017, 51 (5): 961-968.
[23] 李赵春, 王炅. 火炮磁流变阻尼器试验分析与动态模型[J]. 振动与冲击, 2012, 31(1):64-67.
LI Zhao-chun, WANG Jiong. Experimental analysis and dynamic model of artillery magnetorheological damper [J]. vibration and shock, 2012, 31 (1): 64-67.
[24] 朱超, 李赵春, 杨哲,等. 火炮磁流变后坐系统仿真[J]. 计算机仿真, 2012, 29(1):13-16.
ZHU Chao, LI Zhaochun, YANG Zhe, et al. Simulation of artillery magnetorheological recoil system [J]. computer simulation, 2012, 29 (1): 13-16.
[25] Ahmadian M, Poynor J C. An evaluation of magneto rheological dampers for controlling gun recoil dynamics[J]. Shock and Vibration, 2001, 8(3-4): 147-155.
[26] Bajkowski M, Bajkowski J M. Design of the magnetorheological damper for the recoil damping of the special object 7.62 mm calibre[J]. Machine Dynamics Research, 2012, 36(1): 15-23.
[27] Bajkowski M, Makuch A, Lindemann Z. Determining parameters of recoil reduction system with spring and magnetorheological damper intended for special object[J]. Machine Dynamics Research, 2015, 38(3).
[28] Singh H J, Wereley N M. Optimal control of gun recoil in direct fire using magnetorheological absorbers[J]. Smart materials and Structures, 2014, 23(5): 055009.
[29] Akiwate D C, Gawade S S. Design and performance analysis of smart fluid damper for gun recoil system[J]. International Journal of Advanced Mechanical Engineering, 2014, 4(5): 543-550.
[30] Fuchs A, Xin M, Gordaninejad F, et al. Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels[J]. Journal of Applied Polymer Science, 2004, 92(2): 1176-1182.
[31] Wilson M J, Fuchs A, Gordaninejad F. Development and characterization of magnetorheological polymer gels[J]. Journal of applied polymer science, 2002, 84(14): 2733-2742.
[32] Cvek M, Mrlik M, Pavlinek V. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models[J]. Journal of Rheology, 2016, 60(4): 687-694.
[33] Becnel A C, Hu W, Wereley N M. Measurement of Magnetorheological Fluid Properties at Shear Rates of up to 25 0001/s [J]. IEEE Transactions on Magnetics, 2012, 48(11): 3525-3528.
[34] Chand M, Shankar A, Jain K, et al. Improved properties of bidispersed magnetorheological fluids[J]. RSC Advances, 2014, 4(96): 53960-53966.
[35] Ainley L R. Integrated Artillery Recoil Mechanism and Automated Handling Design for 155mm Self-Propelled Howitzer[J]. 1980.
[36] Ristic Z, Ilic S, Davidovic M. Defining optimal values of output parameters of the hydraulic recoil brake in the artillery weapon[J]. Military Technical Courier, 2001, 49(6):580-594.
[37] Penskii O G. Practice and theory of use of recoiling artillery cannons for the embedment of structural components[J]. Soil Mechanics & Foundation Engineering, 2004, 41(5):162-167.
[38] Wang C, Zhang P, Jianping F U, et al. Analysis of Anomalies in Pressure Testing of Artillery Counter-Recoil Mechanism[J]. Journal of Test & Measurement Technology, 2008.
[39] Zheng J, Ouyang Q, Li Z, et al. Experimental analysis of separately controlled multi coils on the performance of MR absorber under impact loading[J]. Journal of Intelligent Material Systems & Structures, 2016, 27.
[40] D. J. PEEL, W. A. BULLOUGH. BINGHAM PLASTIC ANALYSIS OF ER VALVE FLOW[J]. International Journal of Modern Physics B, 1994, 8(20n21):2967-2985.

PDF(2475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/