本文针对一种气室内置于活塞杆内且通过浮动活塞实现油气分离的集成式油气减震器进行实验建模研究,为这种油气减震器能够得到有效应用提供基础。由于该类油气减震器结构上的特殊性,对油气的封严提出了较高要求,从而导致摩擦力特性在针对其的动力学特性描述中起到了关键性的作用。本文针对独立设计的该种集成式油气减震器样件开展动力学测试;在大量实验数据分析的基础上,提出了基于双曲正切回滞模型和纯干表面的双曲正切摩擦模型的组合摩擦力模型,以描述该实验样件的摩擦特性所体现的库伦摩擦、粘性摩擦、Stribeck效应与迟滞现象的综合效应,并受运动速度和系统压力的影响。最后通过模型仿真数据与实验数据的比对以验证模型的准确性。
Abstract
In this paper, one type of integrated hydro-pneumatic strut(HPS), which integrates an internal gas chamber in the rod part and a floating piston used to separate gas from oil was investigated based on an experiment.The main purpose of this research is to invesitgate fundamental dynamic properties for this kind of HPS, and then provides theoretical basis for practical applications.Due to the high standard of seal, the friction characteristic is playing a main role in the dynamic property of this type HPS.It can be found from experiments that the friction properties of this type of HPS is the combination of multiple different friction phenomenon, which includes coulomb friction, viscous friction, Stribeck effect and hysteresis, affected by the system pressure and motion velocity.Considering the above, a novel friction model, which combines the hyperbolic tangent hysteresis model and the friction model for pure sliding and oscillating sliding contacts, has been proposed to describe the friction properties.The model parameters have been identified based on the experimental data.Finally, the effectiveness and accuracy of the friction and dynamic force models has been verified through comparison of the experimental data and the simulation result.
关键词
/
油气减震器;摩擦力模型;实验建模;迟滞现象
{{custom_keyword}} /
Key words
hydro-pneumatic strut /
friction model /
experimental modelling /
hysteresis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cao D, Rakheja S, Su Chun C Y. Pitch plane analysis of a twin-gas-chamber strut suspension[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2008, 222(8):1313-1335.
[2] 杜恒,魏建华. 基于遗传算法的连通式油气悬架平顺性与道路友好性参数优化[J]. 振动与冲击, 2011, 30(8):133-138.
DU Heng, WEI Jian-hua. Optimization of road comfort and road-friendliness of interconnected hydro-pneumatic suspension based on genetic algorithm [J]. Journal of Vibration and Shock, 2011, 30(8):133-138.
[3] 周创辉, 文桂林. 基于改进型天棚阻尼控制算法的馈能式半主动油气悬架系统[J]. 振动与冲击, 2018, 37 (14):168-174.
ZHOU Chuang-hui, WEN Gui-lin. Hydraulic-electrical energy regenerative semi-active hydro-pneumatic suspension system based on a modified skyhook damping control algorithm[J]. Journal of Vibration and Shock, 2018, 37 (14):168-174.
[4] 董志军, 谷正气, 张沙, 等. 基于Fluent的矿用自卸车平顺性分析与优化[J]. 振动与冲击, 2014, 33(15):206-211.
DONG Zhi-jun, GU Zheng-qi, ZHANG Sha, et al. Mining dump truck ride analysis and optimal based on the fluent[J]. Journal of Vibration and Shock, 2014, 33(15):206-211.
[5] 林国问, 马大为, 朱忠领. 基于多轴连通式油气悬架的导弹发射车振动性能研究[J]. 振动与冲击, 2013, 32(12):144-149.
LIN Guo-wen, MA Da-wei, ZHU Zhong-ling. Research on Vibration of Missile Launcher Based on Multi-spindled Interconnected Hydro-pneumatic Suspension[J]. Journal of Vibration and Shock, 2013, 32(12):144-149.
[6] 李仲兴, 郭子权, 王传建, 等. 越野车用两级压力式油气弹簧的建模与仿真[J]. 振动测试与诊断, 2017, 37(3):512-517.
LI Zhong-xing, GUO Zi-quan, WANG Chuan-jian, et al. Modeling and simulating of a two-stage pressure hydro-pneumatic spring for off-road vehicle[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3):512-517.
[7] 孙会来, 金纯, 张文明, 等. 基于分数阶微积分的油气悬架建模与试验分析[J]. 振动与冲击, 2014,33(17):167-172.
SUN Hui-lai, JIN Chun, ZHANG Wen-ming, et al. Modeling and experimental analysis of hydro-pneumatic suspension based on fractional calculus[J]. Journal of Vibration and Shock, 2014, 33(17):167-172.
[8] 韩莉芬. 基于ADAMS与AMESim的油气悬架密封圈阻尼作用影响分析[J]. 机床与液压, 2017, 45(22):109-114.
HAN Li-fen. Performance effect analysis of damping of ring seal on hydro-pneumatic suspension based on ADAMS and AMESim[J]. Machine Tool & Hydraulics, 2017, 45(22):109-114.
[9] Wu L. Analysis of hydro-pneumatic interconnected suspension struts in the roll plane vehicle model[D]. Montreal, Quebec, Canada: Concordia University, 2003.
[10] Cao D. Theoretical analyses of roll- and pitch-coupled hydro-pneumatic strut suspensions[D]. Montreal, Quebec, Canada: Concordia University, 2008.
[11] 黄夏旭, 杨珏, 申焱华, 等. 基于气体溶解与油液可压缩性的油气悬架性能研究[J]. 农业机械学报, 2013, 44(6):14-18.
HUANG Xia-xu, YANG Jue, SHEN Yan-hua, et al. Characteristic analysis of hydro-pneumatic suspension based on gas dissolution and oil compressibility[J]. Transaction of the Chinese Society of Agricultural Machinery, 2013, 44(6):14-18.
[12] Bauer W. Hydro-pneumatic Suspension Systems[M]. Springer Berlin Heidelberg, 2011.
[13] 陈剑锋, 刘昊, 陶国良. 基于LuGre摩擦模型的气缸摩擦力特性实验[J]. 兰州理工大学学报, 2010, 36(3):55-59.
CHEN Jian-feng, LIU Hao, TAO Guoliang. Experiment on friction characteristic of pneumatic cylinders base on LuGre model[J]. Journal of Lanzhou University of Technology, 2010, 36(3):55-59.
[14] JASO C 611-93. Suspension struts for automobiles[S]. Japan: Japanese Automobile Standard Organization, 1993.
[15] Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization[J]. Sensors & Actuators A Physical, 2006, 132(2):441-451.
[16] Andersson S, Söderberg A, Björklund S. Friction models for sliding dry, boundary and mixed lubricated contacts[J]. Tribology International, 2007, 40(4):580-587.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}