内装电磁滑环式主动平衡系统的研究

潘鑫1,2,何啸天2,吴海琦2,高金吉1,2,江志农1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 7-11.

PDF(1378 KB)
PDF(1378 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 7-11.
论文

内装电磁滑环式主动平衡系统的研究

  • 潘鑫1,2,何啸天2,吴海琦2,高金吉1,2,江志农1,2
作者信息 +

A study on electromagnetic-ring active balancing system for machine tool spindles with hollow rotors

  • PAN Xin1,2,HE Xiaotian2,WU Haiqi2,GAO Jinji1,2,JIANG Zhinong1,2
Author information +
文章历史 +

摘要

质量不平衡超标是导致机床主轴功能失效的一种典型故障,而主动平衡系统由于可在线自动降低主轴转子因刀具或砂轮不均匀磨损等因素造成的的不平衡振动,是智能机床主轴的重要组成部分之一。本文介绍了一种可集成安装于主轴中空转子中的内装电磁滑环式平衡执行器,并通过磁场驱动两个配重盘的步进旋转来在线补偿主轴转子的初始不平衡量。在详细介绍该执行器的工作原理以及平衡精度和自锁能力两项性能参数的基础上,通过主动平衡实验验证了该平衡系统的有效性。实验结果表明,该主动平衡系统可在3600 rpm的转速下将机床主轴的不平衡振动降低87.5%。

Abstract

Mass imbalance is a typical cause to failure of machine tool spindles.Because the active balancing system can automatically reduce the unbalance vibration of spindle rotors, it is an essential component of intelligent machine tool spindles.A novel electromagnetic-ring balancing actuator was introduced in this study, which can be integrated into hollow rotors of spindles and compensate the initial mass imbalance through step rotation of two counterweight discs driven by magnetic field.The effectiveness of the balancing system was verified by an active balancing experiment.The experimental results show that the active balancing system could reduce the unbalance vibration of the machine tool spindle by 87.5% at 3 600 r/min.
 

关键词

智能主轴 / 振动控制 / 不平衡振动 / 主动平衡 / 电磁滑环

Key words

Intelligent spindle / vibration control / unbalance vibration / active balancing / electromagnetic-ring

引用本文

导出引用
潘鑫1,2,何啸天2,吴海琦2,高金吉1,2,江志农1,2. 内装电磁滑环式主动平衡系统的研究[J]. 振动与冲击, 2019, 38(20): 7-11
PAN Xin1,2,HE Xiaotian2,WU Haiqi2,GAO Jinji1,2,JIANG Zhinong1,2. A study on electromagnetic-ring active balancing system for machine tool spindles with hollow rotors[J]. Journal of Vibration and Shock, 2019, 38(20): 7-11

参考文献

[1] 陈雪峰,张兴武,曹宏瑞. 智能主轴状态监测诊断与振动控制研究进展[J]. 机械工程学报,2018,54(19):58-69.
CHEN Xue-feng,ZHANG Xing-wu,CAO Hong-rui. Advances in Condition Monitoring, Diagnosis and Vibration Control of Smart Spindles[J]. Journal of Mechanical Engineering, 2018, 54(19):58-69.
[2] Lee J, Kao H A, Yang S. Service innovation and smart analytics for Industry 4.0 and big data environment [J]. Procedia CIRP, 2014, 16:3–8.
[3] 梅雪松, 章云, 杜喆. 机床主轴高精度动平衡技术[M]. 北京:科学出版社, 2015.
[4] Xu X B, Chen S, Zhang Y. Automatic balancing of AMB systems using plural notch filter and adptive synchronous compensation [J]. Journal of Sound and Vibration, 2016, 374: 29–42.
[5] 潘鑫,吴海琦,高金吉.气压液体式磨床自动平衡装置控制策略与实验研究[J]. 振动与冲击, 2015, 34(5):1-5.
PAN Xin, WU Hai-qi, GAO Jin-ji. Control strategy and experiment research on liquid-transfer active balancing device by pneumatic means for grinding machines [J]. Journal of Vibration and Shock, 2015, 34(5):1-5.
[6] Hredzak B, Guo G X. New Electromechanical Balancing Device for Active Imbalance Compensation [J]. Journal of Sound and Vibration, 2006, 294:737–751.
[7] Dyer S W, Kerlin J, Hackett B K. Electromagnetically actuated rotating machine unbalance compensator [P]. USA: 5757662, 1998-3-26.
[8] Shin K K, Ni J.Adaptive Control of Multi-Plane Active Balancing Systems for Speed-Varying Rotors [J].Journal of Dynamic Systems,Measurement and Control,2003,125(9):372-381.
[9] Moon J D, Kim B S, Lee S H. Development of the active balancing device for high -speed spindle system using influence coefficients[J]. International  Journal of Machine Tools and Manufacture ,2006, 46(9): 978-987.
[10] Hofmann Company. Active Balancing: Electromagnetic Ring Balancer AB9000 [EB/OL]. http//www. hofmann-balancing. com/products/active-balancing-systems/ring-balancer-ab-9000.html , 2018.
[11] Lord Corporation. Lord In-flight Propeller Balancing System [EB/OL]. http://www. lord.com/products-and-solutions/ active- vibration-control/aerospace-and-defense, 2018.
[12] 樊红卫, 智静娟, 史必佳, 等. 转子自适应主动平衡算法及电磁平衡头单盘平衡试验[J].西安交通大学学报, 2018, 52(08):15-21+29.
FAN Hong-wei, ZHI Jing-juan, SHI Bi-jia, et al. Adaptive rotor balancing algorithm and single-disc rotation test for electromagnetic balancer[J]. Journal of XI’AN Jiaotong University, 2018, 52(08):15-21+29.
[13] 陈立芳, 陈哲超, 王维民, 等. 基于自适应粒子群优化的非稳态自动平衡控制算法研究[J].振动与冲击, 2018, 37(24):131-136.
CHEN Li-fang, CHEN Zhe-chao, WANG Wei-min, et al. Nonstationary autobalancing control based on adaptive particle swarm optimization [J]. Journal of Vibration and Shock, 2018, 37(24):131-136.
[14] 潘鑫, 高金吉.高端机床气压液体式与电磁滑环式自动平衡原理和方法的研究[J].机械工程学报, 2017, 53(04):183.
    PAN Xin, GAO Jin-ji. Research on principles and methods of pneumatic liquid type and electromagnetic ring type auto-balancing systems for high-end machine tools[J]. Journal of Mechanical Engineering, 2017, 53(04):183.
[15] 徐娟, 陈时桢, 何烊剑, 等. 基于模糊PID的平衡头自适应控制策略研究 [J].电子测量与仪器学报, 2016, 30(06): 895-902.
   XU Juan, Chen Shi-zhen, He Yang-jian, et al. Research on self-satisfaction control strategy of balancing head based on fuzzy-PID [J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(06): 895-902.
[16] 潘 鑫, 吴海琦, 江志农, 等. 一体化侧励磁电磁滑环式自动平衡装置 [P]. 中国,ZL201610811273.3, 2016-09- 08.

PDF(1378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/