基于Küssner函数的不同气动导纳模型对大跨桥梁抖振响应的影响

张志田,陈添乐,吴长青

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 131-139.

PDF(3045 KB)
PDF(3045 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 131-139.
论文

基于Küssner函数的不同气动导纳模型对大跨桥梁抖振响应的影响

  • 张志田,陈添乐,吴长青
作者信息 +

Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge

  • ZHANG Zhitian,CHEN Tianle,WU Changqing
Author information +
文章历史 +

摘要

采用Küssner类型函数对抖振力以及气动导纳在时域内进行模拟。对某大跨度悬索桥初步设计方案进行了风洞试验,得到该桥梁加劲梁断面的气动导纳。以试验气动导纳以及基于二维薄机翼理论的Sears气动导纳为基础进行了参数识别,得到相应的Küssner函数参数值。最后,根据识别得到的Küssner函数,分别在时域内计算了考虑Sears气动导纳、试验气动导纳以及不考虑导纳时的抖振位移响应。本文的分析结果表明采用Küssner函数法可灵活地将频域内的气动导纳转换为时域函数,从而便于考虑各类非线性后进行动力有限元分析。数值算例结果表明,当不考虑气动导纳时会得到显著偏大的抖振结果。考虑气动导纳时,基于Sears函数的抖振响应又明显高于基于试验导纳的抖振响应。因此,即使是对于采用类平板扁平箱梁的大跨度桥梁,其抖振响应分析宜采用试验测得的气动导纳代替广泛应用的Sears函数。

Abstract

The Küssner-type function was adopted to simulate the buffeting forces and aerodynamic admittances (AAs) in the time domain.Wind tunnel tests were conducted with the elementary scheme of a long-span bridge to obtain the AAs of its main girder.Based on the experimentally obtained AAs and the Sears function, which was derived from thin airfoil theories, the corresponding Küssner functions were obtained via parametric identification.Finally, the buffeting responses of the concerned bridge were computed in the time domain with the Küssner functions identified from the Sears AAs, experimentally obtained AAs, and without consideration of any, respectively.The analytical results show that the Küssner function method is able to transfer frequency-domain-based AAs to time-domain flexibly, and therefore benefits inclusion of various nonlinearities in dynamic FEM simulations.Results based on the numerical example indicate that exclusion of the AAs results in extraordinarily large buffeting responses.When AAs are included, the buffeting results based on the Sears function are significantly greater than those based on experiments.Therefore, it is appropriate to employ experimentally-based AAs to replace the extensively used the Sears function for buffeting analyses of long-span bridges, even for those stiffened with flat box-girders.

关键词

桥梁;Kü / ssner函数;抖振;时域;试验;气动导纳

Key words

 bridge / Küssner function / buffeting / time-domain / test / aerodynamic admittance

引用本文

导出引用
张志田,陈添乐,吴长青. 基于Küssner函数的不同气动导纳模型对大跨桥梁抖振响应的影响[J]. 振动与冲击, 2019, 38(20): 131-139
ZHANG Zhitian,CHEN Tianle,WU Changqing. Effects of Küssner-function-based aerodynamic admittance models on the buffeting responses of a long-span bridge[J]. Journal of Vibration and Shock, 2019, 38(20): 131-139

参考文献

[1] Deodatis G. Simulation of Ergodic Multivariate Stochastic Processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[2] Shinozuka M, Yun C B, Seya H. Stochastic methods in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 36(90):829-843.
[3] Minh N N, Miyata T. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1-3):301-315.
[4] 曹映泓, 项海帆, 周颖. 大跨度桥梁随机风场的模拟[J]. 土木工程学报, 1998, 31(3):72-79.
Cao Yinghong,Xiang Haifan,Zhou Ying. Simulation of stochastic wind field on long-span bridge[J]. China Civil Engineering Journal, 1998, 31(3):72-79.
[5] Davenport A G. Buffeting of a suspension bridge by storm winds[J]. Proc Asce, 1962, 88(3):233-270.
[6] Sears, William R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences, 1941, 8(3):104-108
[7] Scanlan R H. Role of Indicial Functions in Buffeting Analysis of Bridges[J]. Journal of Structural Engineering, 1984, 110(7):1433-1446.
[8] 韩万水, 陈艾荣, 胡晓伦. 大跨度斜拉桥抖振时域分析理论实例验证及影响因素分析[J]. 土木工程学报, 2006, 39(6):66-71.
Han Wanshui,Chen Airong,Hu Xiaolun.Verification of time- domain buffeting theory and analysis of influence factors for long-span cable-stayed bridges[J]. China Civil Engineering Journal, 2006, 39(6):66-71.
[9] 潘韬, 张敏, 葛耀君,等. 典型桥梁断面的二维抖振响应分析[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(3):537-541.
Pan Tao,Zhang Min,Ge Yaojun,et al. Two-dimensional Buffeting Respons Analysis of Typical Bridge Section[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2015, 39(3):537-541.
[10] 韩艳, 陈政清, 王建辉,等. 贵阳小关桥双肢薄壁墩抖振响应试验与影响因素分析[J]. 土木工程学报,2009, 42(1):41-48.
Han Yan,Chen Zhengqing,Wang Jianhui,et al.Analysis of influence factors of buffeting response and full-scale aeroelastic experiments for the Xiaoguan bridge[J]. China Civil Engineering Journal,2009, 42(1):41-48.
[11] 于洪刚, 葛耀君, 赵林,等. 上海卢浦大桥抖振时域分析[J]. 结构工程师, 2009, 25(3):84-89.
Yu Honggang, Ge Yaojun,Zhao Lin,et al. Time domain analysis of buffeting on Shanghai Lupu Bridge[J]. Structural Energineering, 2009, 25(3):84-89.
[12] K. Aas-Jakobsen, E. Strommen. Time domain buffeting response calculations of slender structures[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89(5):341-364.
[13] Küssner, H.G.: Zusammenfassender Bericht über den instationären Auftrieb von Flügeln[R]. Luftfahrtforschung 13, 410–424 (1936)
[14] 张志田, 胡海波, 陈政清. 桥梁气动自激力阶跃函数及时域颤振的数值算法[J]. 土木工程学报, 2011, 44(2):99-107.
Zhang Zhitian,Hu haibo,Chen Zhengqing.Bridge indicial functions for self-excited aerodynamic forces and numerical algorithm for time domain flutter[J]. China Civil Engineering Journal, 2011, 44(2):99-107.
[15]  Z T Zhang, Z Q Chen, Y Y Cai,et al.Indicial Functions for Bridge Aeroelastic Forces and Time-Domain Flutter Analysis[J]. Journal of Bridge Engineering, 2011, 16(4):546-557.
[16] Scanlan R H. The action of flexible bridges under wind, II: Buffeting theory[J]. Journal of Sound & Vibration, 1978, 60(2):201-211.
[17] Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind[J]. Journal of the Structural Division, 1977, 103(9):1867-1883.
[18] 雷英杰, 张善文. MATLAB遗传算法工具箱及应用.第2版[M]. 西安电子科技大学出版社, 2014.
[19] 张若雪. 桥梁结构气动参数识别的理论和试验研究[D]. 同济大学, 1998.
[20] 靳欣华, 项海帆, 陈艾荣. 平板气动导纳识别理论及测量[J]. 同济大学学报, 2003, 31(10):1168-1172.
Jin Xinhua,Xiang Haifan,Chen Airong. Identification of flat-plate aerodynamic admittance  theory and test [J]. Journal of Tongji University, 2003, 31(10):1168-1172.
[21] 朱乐东, 李思翰, 郭震山. 基于振动翼栅脉动风场测力试验的桥梁断面气动导纳识别方法研究[C]. 全国结构风工程学术会议. 2009.
[22] Z  T  Zhang, W F Zhang , Y J Ge. Aerodynamic admittances of bridge deck sections: Issues and wind field dependence[J].  Wind and Structures ,2017, 25(3): 283-299
[23] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[M]. John Wiley & Sons, Ltd, 1972:563-589.
[24] Panofsky H A, Tennekes H, Lenschow D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-Layer Meteorology, 1977, 11(3):355-361.

PDF(3045 KB)

512

Accesses

0

Citation

Detail

段落导航
相关文章

/