本文主要针对复合壳体对炸药抗破片冲击起爆的防护问题,基于仿真和实验结果可行性校验基础上,开展了不同复合壳体对炸药层内压力峰值、能量变化等影响特性研究。通过不同中间层复合壳体方案的对比可知,低波阻抗复合壳体(钢-聚脲树脂-钢)可使炸药层压力峰值大幅下降为单一钢壳体的36%;结果同时表明中间层材料比强度越高,抗破片侵彻和吸能性能越强;改变复合壳体排列顺序,将聚脲树脂作为壳体内衬时,炸药层峰值压力仅为单一钢壳体的30%,传入炸药层的能量比单一钢壳体降低近一个数量级;当复合壳体厚度与单一钢壳体相同时,钢-聚脲树脂复合壳体中炸药的峰值压力降为单一钢壳体的64%,传入炸药层的能量减少约一半。由此可见复合壳体显著降低了破片作用下炸药层的峰值压力和传入炸药的能量,可有效提高炸药抗破片冲击起爆的能力。研究结果可为复合壳体用于炸药抗冲击起爆的设计与分析提供重要参考。
Abstract
The shock initiation of composite shell charges under the impact of fragments was studied.Simulations were compared with experimental results.The research on the pressure peak and energy change of the explosive in the protection of the different composite shell was carried out.By comparing different configurations, it was obtained that the pressure peak of the explosive in the protection of the composite shell with low wave impedance of the interlayer material reduce to 36% of that obtained from single steel shell.And the result also shows the higher strength and modulus of the interlayer material, the better performance of against penetration of fragments and energy absorption of the composite shell.By changing the arrangement of composite shell, placing the SPUA near the explosive, the pressure peak of explosive is 30% of the single steel shell, and the absorption of energy is a magnitude lower than that of the single steel shell.With a certain thickness of the composite shell, it is found that the pressure peak of the explosive of the steel-SPUA shell is 64% of the single steel shell, and the energy transmitted into explosive is half of the single steel shell.Therefore, the composite shell reduces pressure peak and the energy transmitted into composition B significantly, and improves the ability of explosives against shock initiation of fragments.
关键词
复合壳体 /
炸药 /
冲击起爆 /
压力峰值 /
吸能性能
{{custom_keyword}} /
Key words
composite shell /
explosive /
shock initiation /
peak pressure /
energy absorption
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Chen J K, Ching H K, Allahdadi F A. Shock-induced detonation of high explosives by high velocity impact[J]. Journal of Mechanics of Materials & Structures, 2007, 2(9):1701-1721.
[2] 李小笠,屈明,路中华. 三种破片对带壳炸药冲击起爆能力的数值分析[J].弹道学报,1995,21(4):72~75
LI Xiao li,QU Ming,LU Zhong hua. Numerical Simulation on the Impacting Effect of Three Type Fragment Impacting Steel-covered Charge[J].Journal of Ballistics. 1995,21(4):72~75
[3] 梁争锋,袁宝慧. 破片撞击起爆屏蔽B炸药的数值模拟和实验[J].火炸药学报,2006,29(1):5~9
LIANG Zheng Feng,YUAN Bao Hui. Numerical Simulation and Experimental Study of the Initiation of Shielded Composition B Impacted by Fragment[J].Chinese Journal of Explosive & Propellants. 2006,29(1):5~9
[4] 孙宝平,段卓平,张海英,等.破片撞击装药点火实验和数值模拟[J]. 爆炸与冲击,2013,33(5):456~462.
SUN Bao Ping,DUAN Zhuo Ping,ZHANG Hai Ying,et al. Numerical Simulation and Experiment of the Initiation of Explosive Impacting by Fragment[J].EXPLOSION AND SHOCK WAVES,2013,33(5):456~462.
[5] 贾宪振,杨建,陈松,等. 带壳B炸药在钨球撞击下冲击起爆的数值模拟[J]. 火炸药学报,2010,33(5):43~47.
JIA Xian Zhen,YANG Jian,CHEN Song,et al. Numerical Simulation on Shock Initiation of Composition B Explosive Impacting by Tungsten Sphere[J]. Chinese Journal of Explosive & Propellants. 2010,33(5):43~47.
[6] 刘念念,宋丹丹,金辉,等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与试验研究[J]. 振动与冲击,2018,37(4):153-159.
LIU Niannian, SONG Dandan, JIN Hui, et al. Numerical simulation and experimental study on the damage characteristics of hemispherical shaped charge on composite armor. Journal of Vibration and Shock, 2018, 37(4): 153-159.
[7] 郑折,李晓彬,霍契机. 圆柱形破片侵彻纤维增强复合材料三明治板的弹道极限模型[J]. 振动与冲击,2018,37(8):17-21.
ZHENG Zhe,LI Xiaobin,HUO Qiji. AModelfor Ballistic Limitof Cylindrical Fragment Penetrating the FRP Sandwich Plate. Journal of Vibration and Shock, 2018, 37(8): 17-21.
[8] 黄阳洋,王志军,赵鹏铎,等. 聚脲涂层复合结构防护性能研究现状[J]. 兵器装备工程学报,2018,39(4):57-60.
Huang Yangyang, Wang Zhijun, Zhao Pengyi, et al. Research Status of Properties of Polyurea Coating Composite Structures[J]. Journal of Ordnance Equipment Engineering, 2018, 39(4): 57-60.
[9] 陈薇.纤维复合材料及其组合靶板的抗破片机理及弹道特性研究[D].南京:南京理工大学,2006.
Chen Wei. The study of bulletproof mechanism and ballistic property of fiber-reinforced composite target[D]. NanJing:NanJing University of Science and Technology, 2006.
[10] 黄拱武.弹体撞击带纤维软防护明胶靶标的数值模拟仿真研究[D].南京:南京理工大学,2013.
Huang Gong Wu. Numerical Simulation Study of the Target with fiber protection Impacting by Bullet[D].NanJing:NanJing University of Science and Technology, 2013.
[11] 陆晓,宣海军,廖连芳. 碳纤维层合板弹体冲击仿真方法研究[J]. 材料工程,2009,增刊2:25~28
LU Xiao,XUAN Hai Jun,LIAO Lian Fang. Simulation of Ballistic Impact on Carbon Fiber Laminate Panels [J]. Journal of Materials Engineering, 2009, supplement extra edition 2: 25~28
[12] 闵冬冬.破片侵彻下战斗部装药失效机理及低易损性方法研究[D]. 北京:北京理工大学,2014.
MIN Dong dong. The failure mechanism of warhead charge and The low vulnerability method by the fragment penetration[D]. Beijing:Beijing Institute of technology, 2014.
[13] 陈刚,陈小伟,陈忠福,等.A3钢钝头弹撞击45钢板破坏模式的数值分析[J]. 爆炸与冲击,2007,27(5):390~397.
CHEN Gang,CHEN Xiao Wei,CHEN Zhong Fu,etal. Numerical Simulation of Failure Model of 45#steel Impacting by Blunt Penetrator of A3 steel[J]. Explosion and Shock Waves, 2007, 27(5): 390~397.
[14] 李凯,朱建生,钱志博,等. 基于J-C本构模型的Comp.B炸药落锤冲击数值模拟[J]. 力学与实践,2011,33(1):21~23.
LI Kai,ZHU Jian Sheng,QIAN Zhi Bo,etal. Numerical Simulation of Drop Weiht Impact tests for Comp.B using JOHNSON-COOK Constitutive model[J]. Mechanics and Practice Journal. 2011,33(1):21~23.
[15] 章冠人,陈大年.凝聚炸药起爆动力学[M]. 北京:国防工业出版社,1991.
ZHANG Guan Ren,CHEN Da Nian . Initiation dynamics of condensed explosives[M]. Beijing: national defence industry press,1991.
[16] 蒲兴福. 弹性体增强混凝土砌体墙爆炸响应的数值分析[D].宁波:宁波大学,2008.
Pu Xing Fu. Numerical Analysis on Responses of Elastomer-Reinforced Concrete Masonry Walls Sunjected to Blast[D].Ningbo:Ningbo University, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}