基于弹性介质动力学理论,研究了圆形洞室在瞬态径向非均匀荷载下的动力响应。利用波函数展开法与Laplace变换法,并考虑圆形洞室内表面应力边界非均匀条件,得到单位脉冲荷载下圆形洞室二维空间中应力和位移场在时域内的数值解。并通过算例,分析了径向非均匀瞬态荷载下的波动特性以及剪切模量等因素对应力位移场在径向和环向上分布特征的影响。研究结果表明,随着时间推移环向应力与位移的振动响应均表现出异步性,峰值出现的位置随时间在0-π之间变化,发生极值旋转;无量纲时间 大于2时,径向应力发生明显衰减,而径向位移与环向响应在无量纲时间 大于8时,才出现明显衰减,径向应力的振动周期最小;剪切模量对洞室表面应力位移幅值有显著影响;在非均匀荷载作用下,非均匀处响应幅值明显大于其他位置,径向应力、位移响应大于环向,衰减速度也更快。
Abstract
Based on the theory of elastic medium dynamics, the dynamic response of a circular cavity under transient radial inhomogeneous load was studied.Considering the circular cavity inner surface stress boundary conditions of uneven, the numerical solution of stress and displacement of sourrounding rock was obtained in the time domain under unit impulse load by an expansion method for wave function and the Laplace transform method.The factors, such as wave characteristics of radial nonuniform transient loads and shear modulus, produce effects on the distribution of stress and displacement in radial and annular direction.The effects were analyzed through an example.The dynamic response of tangential stress and displacement were asynchronous with time, and the position of peak value changes from 0 to π over time.When the dimensionless parameter of time was greater than 2, radial stress damped obviously.When the dimensionless parameter of time was greater than 8, radial displacement and tangential response damped to 0 gradually.The vibration period of radial stress is minimal.Shear modulus has significant influence on the amplitude of cavity inner surface displacement.Under non-uniform load, the response amplitude of non-uniform location is obviously greater than that of other positions, and the response of radial stress and displacement is greater than that of ring direction, and the attenuation speed is faster.
关键词
径向非均匀 /
Laplace变换 /
圆形洞室 /
动力响应
{{custom_keyword}} /
Key words
radial inhomogeneity /
laplace transform /
cylindrical cavity /
dynamic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Senjuntichai T, Rajapakse R K N D. Transient response of a circular cavity in a poroelastic medium[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1993, 17(6):357-383.
[2] Gao G.Y., Gao M., Shi G. An analytical solution on vibration response of the lining subjected to internal loading. In: Proceedings of the fourth inter-national symposium on environmental vibration: prediction, monitoring mitigation and evaluation, Beijing, China, October. 27–30. Beijing: Science Express; 2009. P. 344–51.
[3] Gao M, Wang Y, Gao G Y, et al. An analytical solution for the transient response of a cylindrical lined cavity in a poroelastic medium[J]. Soil Dynamics & Earthquake Engineering, 2013, 46(1):30-40.
[4] Coskun I, Engin H, Ozmutlu A. Dynamic stress and displacement in an elastic half-space with a cylindrical cavity[J]. Shock & Vibration, 2015, 18(6):827-838.
[5] 陆建飞, 王建华. 饱和土中的任意形状孔洞对弹性波的散射[J]. 力学学报, 2002, 34(6):904-913.
Lu J, Wang J (2002). The scattering of elastic waves by holes of arbitrary shapes in saturated soil.[J]. Acta Mechanica Sinica, 2002, 34(6):904-913. (in Chinese)
[6] Karinski Y S, Shershnev V V, Yankelevsky D Z. Analytical solution of the harmonic waves diffraction by a cylindrical lined cavity in poroelastic saturated medium[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 31(5):667-689.
[7] 王滢, 高盟, 高广运,等. 饱和土中圆柱形衬砌对瞬态弹性波的散射[J]. 地震工程学报, 2012, 34(4):324-330.
Wang Y, Gao M, Gao G Y, et al. Scattering of Transient Elastic Wave by Cylindrical Cavity with Lining in Saturated Soil[J]. Northwestern Seismological Journal, 2012, 34(4):324-330. (in Chinese)
[8] 李伟华, 张钊. 饱和土中深埋圆柱形衬砌洞室对瞬态平面波的散射[J]. 地球物理学报, 2013, 56(1):325-334.
Wei-Hua L I. Scattering of transient plane waves by deep buried cylindrical lining cavity in saturated soil[J]. Chinese Journal of Geophysics, 2013, 56(1):325-334. (in Chinese)
[9] 翟朝娇, 夏唐代, 王宁,等. 反平面冲击荷载作用下圆柱形洞室的动力响应[J]. 振动与冲击, 2013, 32(2):153-157.
Zhai C J, Xia T D, Wang N, et al. Dynamic response of a cylindrical cavity to an anti-plane impact load[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2013, 32(2):153-157.
[10] Feldgun VR,Kochetkov A V, Karinski Y S, Yankelevsky D Z. Internal blast loading in a buried lined tunnel[J]. International Journal of Impact Engineering, 2008, 35(3):172-183.
[11] Glenn L A, Kidder R E. Blast Loading of a Spherical Container Surrounded by an Infinite Elastic Medium[J]. Journal of Applied Mechanics, 1983, 50(4a):723-726.
[12] Duffey T A. Transient Response of Viscoplastic and Viscoelastic Shells Submerged in Fluid Media[J]. Journal of Applied Mechanics, 1976, 43(1):137.
[13] 蔡袁强, 陈成振, 孙宏磊. 爆炸荷载作用下饱和土中隧道的瞬态动力响应[J]. 岩土工程学报, 2011, 33(3):361.
Cai Y Q, Chen C Z, Sun H L. Transient dynamic response of tunnels subjected to blast loads in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3):361-367. (in Chinese)
[14] Karpp R R, Duffey T A, Neal T R. Response of Containment Vessels to Explosive Blast Loading[J]. Journal of Pressure Vessel Technology, 1983, 105(1):23-27.
[15] Slaughter W S. The Linearized Theory of Elasticity[M]// The linearized theory of elasticity. Birkh user, 2002:305-329.
[16] Yuan Z, Cai Y, Cao Z. An analytical model for vibration prediction of a tunnel embedded in a saturated full-space to a harmonic point load[J]. Soil Dynamics & Earthquake Engineering, 2016, 86:25-40.
[17] DURBIN F. Numerical inversion of Laplace transforms efficient improvement to Durbin and Abate’s method[J].Computer Journal, 1974, 17(4): 371–376.
[18] 徐海清. 刻槽控制爆破有限元数值模拟[D]. 武汉:武汉理工大学, 2004.
Xu H T. The infinite element numerical simulation of groove fracture controlled blasting[D]. Wuhan: Wuhan University of Technology, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}