伺服阀用超磁致伸缩致动器结构设计及输出位移建模

郑佳伟,何忠波,周景涛,薛光明,荣策,柏果

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 83-89.

PDF(1447 KB)
PDF(1447 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 83-89.
论文

伺服阀用超磁致伸缩致动器结构设计及输出位移建模

  • 郑佳伟,何忠波,周景涛,薛光明,荣策,柏果
作者信息 +

Structure design and output displacement modeling of a giant magnetostrictive actuator for a servo valve

  • ZHENG Jiawei,HE Zhongbo,ZHOU Jingtao,XUE Guangming,RONG Ce,BAI Guo
Author information +
文章历史 +

摘要

针对传统永磁偏置式超磁致伸缩致动器轴向偏置磁场均匀性较差的问题,设计了一种具有分布式永磁体偏置结构的阀用超磁致伸缩致动器;采用控制变量的方法,在限定超磁致伸缩致动器结构尺寸的条件下,通过改变超磁致伸缩棒的段数,对致动器偏置磁场进行仿真分析,并确定了最佳分布结构;基于磁阻理论、J-A模型、二次畴转模型及振动理论知识建立了阀用超磁致伸缩致动器的输出位移模型,并通过Matlab中lsim函数对致动器的阶跃响应及谐波响应进行了数值求解;为验证结构设计的合理性和模型的准确性,搭建了该致动器的试验系统,并进行了阶跃响应及谐波响应试验;结果表明:所设计的阀用超磁致伸缩致动器阶跃响应时间可达2.37 ms,在20 Hz到200 Hz的驱动频率范围内,试验结果与模型计算结果基本吻合,证明了模型的准确性。

Abstract

For the problem of poor homogeneity of axial bias magnetic field in traditional giant magnetostrictive actuators, a new one with distributed structure was designed.Then, under the condition of defining the radial and axial dimensions of this actuator, the distributed structure of bias magnetic field was simulated by changing the number of segments of the giant magnetostrictive rod, and the optimal distribution was determined.An output displacement model of the giant magnetostrictive actuator was established through the reluctivity theory, the J-A model, quadratic domain-transfer model and the knowledge of vibration theories.Based on this model, the step response and harmonic response of the actuator were obtained by the lsim function in Matlab.Finally, a test system for the actuator was established, and the step response test and harmonic response test were performed.The results show that the step response time of the actuator can reach 2.37 ms.and in the driving frequency range of 20 Hz to 200 Hz, the test results are basically consistent with the model calculation results, which proves the accuracy of the model.

关键词

超磁致伸缩致动器 / 偏置磁场 / 结构设计 / 位移建模 / 伺服阀

Key words

giant magnetostrictive actuator / bias magnetic field / structure design / displacement modeling / servo valve

引用本文

导出引用
郑佳伟,何忠波,周景涛,薛光明,荣策,柏果. 伺服阀用超磁致伸缩致动器结构设计及输出位移建模[J]. 振动与冲击, 2019, 38(20): 83-89
ZHENG Jiawei,HE Zhongbo,ZHOU Jingtao,XUE Guangming,RONG Ce,BAI Guo. Structure design and output displacement modeling of a giant magnetostrictive actuator for a servo valve[J]. Journal of Vibration and Shock, 2019, 38(20): 83-89

参考文献

[1] 訚耀保.极端环境下的电液伺服控制理论及应用技术[M].上海:上海科学技术出版社,2012.
YIN Yaobao. Electro-hydraulic Servo Control Theory and Application Technology in Extreme Environment [M]. Shanghai: Shanghai Science and Technology Press, 2012.
[2] 王卓,黄川,申振丰,等.小流量电液伺服阀叠合量气动测量台的研制[J].液压与气动,2017,(05):113-119.
WANG Zhuo, HUANG Chuan, SHEN Zhenfeng, et al. Pneumatic Measuring System for Overlap Electro-hydraulic Servo Valve[J]. Hydraulic & Pneumatic, 2017, (05): 113-119.
[3] 杨朝舒,何忠波,李冬伟,等.伺服阀用液压放大式GMA的设计及建模[J].压电与声光,2014, 36(6):963-966.
YANG Zhaoshu, HE Zhongbo, LI Dongwei, et al. Design and Modeling of Hydraulically Amplified Giant Magnetostrictive Actuator for Servo Value[J]. Piezoelectrics & Acoustooptics, 2014, 36(6): 936-966.
[4]朱玉川,李跃松.超磁致伸缩执行器驱动的新型射流伺服阀[J].压电与声光,2010,32(4):574-577.
ZHU Yuchuan, LI Yuesong. A Novel Jet Pipe Serve Valve Driven by Giant Magnetostrictive Actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(4): 574-577.
[5] 赵冉,卢全国,雍康俊,等.磁致伸缩执行器驱动的精密流量阀建模与仿真[J].机械设计与研究,2015,(06):115-118.
ZHAO Ran, LU Quanguo, YONG Kangjun, et al. Modeling and Simulation of Precision Flow Valve by Magnetostrictive Actuator[J]. Mechanical Design and Research, 2015, (06): 115-118.
[6] 贾振元,郭东明.超磁致伸缩微位移执行器原理与应用[M].北京:科学出版社,2008.
JIA Zhenyuan, GUO Dongming. Theory and Applications of Giant Magnetostrictive Micro-displacement Actuator[M]. Beijing: China Science Press, 2008.
[7] 王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008.
WANG Bowen, CAO Shuying, HUANG Wenmei. Magnetostrictive Materials and Devices [M]. Beijing: Metallurgical Industry Press, 2008.
[8] 郭咏新,张 臻,王贞艳,等. 超磁致伸缩作动器的率相关振动控制实验研究[J].振动与冲击,2015,32(12):51-57.
GUO Yong-xin, ZHANG Zhen, WANG Zhen-yan,et al. Experiment investigation on rate-dependent vibration control of giant magnetostrictive actuators[J]. Journal of Vibration and Shock, 2015, 32(12): 51-57.
[9] Wang T, Zhou Y. Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators[J]. International Journal of Solid Structures. 2013(50): 2970-2979.
[10] ZHANG Heng, ZHANG Tianli, JIANG Chengbao. Design of a Uniform Bias Magnetic Field for Giant Magnetostrictive Actuators Applying Triple-ring Magnets[J]. Smart Materials and Structures, 2013,  (22): 115009.
[11] YANG Zhaoshu, HE Zhongbo, LI Dongwei, et al. Bias Magnetic Field of Stack Giant Magnetostrictive Actuator. Design, Analysis and Optimization [J], Advances in Materials Science and Engineering, 2016, 2016: 1-13.
[12] 牟星,唐海军,高学绪,等.超磁滞伸缩致动器中偏置磁场的有限元模拟[J].磁性材料及器件,2014, 45(4):6-10.
MOU Xing, TANG Haijun, GAO Xuexu, et al. Finite Element Modeling of Magnetic Bias Field for Magnetostrictive Actuator[J]. Magnetic Material Devices, 2014, 45(4): 6-10.
[13] 杨理华,李践飞,吴海平,等.超磁致伸缩作动器非线性模型辨识研究[J].振动与冲击,2015,34(18):142-146.
YANG Li-hua, LI Jian-fei, WU Hai-ping, et al. Parameter identification of nonlinear model of giant magnetostrictive actuator[J]. Journal of Vibration and Shock, 2015, 34(18): 142-146.
[14] 刘慧芳,王汉玉,王洁,等.精密磁致伸缩致动器的动态非线性多场耦合建模[J].光学 精密工程,2016,24(5): 1128-1137.
LIU Huifang, WANG hanyu, WANG Jie, et al.. Modeling of Dynamic Nonlinear Multi-field Coupling for Precision Magnetostrictive Actautor[J]. Optics and Precision Engineering, 2016, 24(5): 1128-1137.
[15] 张雷,邬义杰,刘孝亮,等.嵌入式超磁致伸缩构件多场耦合优化[J].农业机械学报,2012,43(5):190-196.
Zhang Lei, Wu Yijie, Liu Xiaoliang, et al.Multi-field Coupling model of embedded giant magnetostrictive components optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(5): 190-196.
[16] 薛光明,何忠波,李冬伟,等.超磁致伸缩棒磁场强度建模及线圈优化分析[J].纳米技术与精密工程,2014,12(2):85-90.
Xue Guangming,He Zhongbo,Li Dongwei,et al.Magnetic Field Intensity Model for Giant Magnetostrictive Rod and Coil Optimization Analysis [J]. Nanotechnology and Precision Engineering,2014,12(2):85-90.
[17] Sato Y, Tanaka H, Fuseya T. Characteristics of a proportional injector for common rail injection system : 1st Report, injection characteristics by a switching pilot-valve[J]. Transactions of the JSME Series C, 2000, 66(646): 1857-1860.
[18] 范文涛,林明星,鞠晓君,等.圆筒状超磁致伸缩致动器磁场研究及仿真[J].功能材料,2017,48(5):54-60.
Fan Wentao, Lin Mingxing, Ju Xiaojun, et al. MagneticField Calculation and Simulation of a Cylindrical giant magnetostrictive actuator[J]. Functional Materials, 2017, 48(5): 56-60.
[19] 薛光明,张培林,何忠波,等.喷油器用超磁致伸缩棒致动器多自由度模型[J].机械工程学报,2015,51(24):97-104.
Xue Guangming,Zhang PeilinHe Zhongbo,et al.multiple degrees of freedom model of giant magnetostrictive actuator used on high-pressure-common-rail injector[J]. Journel of mechanical Engineering, 2015, 51(24): 97-104.
[20] 崔旭,何忠波,李冬伟,等.新型阀用超磁致伸缩致动器结构设计与实验研究[J].机械设计,2013,30(5):55-58.
Cui Xu,He Zhongbo,Li Dongwei,et al.Design and experimental study of giant magnetostrictive actuator for valve[J]. Jouranl of Machine Design, 2013, 30(5): 55-58.

PDF(1447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/