钢轨异常磨耗对构架横向加速度影响研究

王晨1,邬平波1,罗世辉1,许自强2,马卫华1,董孝卿2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 244-251.

PDF(2523 KB)
PDF(2523 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 244-251.
论文

钢轨异常磨耗对构架横向加速度影响研究

  • 王晨1,邬平波1,罗世辉1,许自强2,马卫华1,董孝卿2
作者信息 +

A study on the effect of an abnormal worn rail on the lateral acceleration of a bogie frame

  • WANG Chen1,WU Pingbo1,LUO Shihui1,XU Ziqiang2,MA Weihua1,DONG Xiaoqing2
Author information +
文章历史 +

摘要

针对某型高速动车运行过程中转向架构架横向加速度报警的问题,构建了车辆多体动力学模型,结合实测磨耗钢轨外形,研究了异常磨耗钢轨与构架横向加速度报警间的关系。仿真分析发现当动车高速运行于实测的轨道不平顺线路上时,长期未打磨钢轨区段对应的轮对、构架横向加速度明显要大于一次打磨和二次打磨钢轨。随着钢轨磨耗加剧,轮轨接触等效锥度也呈上升的趋势,降低了车辆稳定性。并且通过现场实验验证长期未打磨钢轨对应构架横向加速度明显大于新打磨钢轨。研究结果表明:钢轨轨面长期未打磨而出现不正常的宽光带磨耗与轨距角磨耗增大了轮轨间等效锥度,是导致轮轨接触不良主要原因,而轮轨接触不良是造成动车组构架横向稳定性变差的重要因素。

Abstract

For exploring the causes of altered bogie lateral accelerations of certain high speed trains, this paper aims at analyzing the relationship between the profile of worn rails and the dynamic behaviors of such high speed trains.A dynamic model was developed with actual measured wheel and rail profiles.The effect of the worn wheel/rail relationship on transverse vibration of the bogie frame was investigated.Simulation results indicated that the lateral acceleration of wheelsets and the bogie frame running on long-term unpolished rails was remarkably higher than those on rails with once and twice polishment.During the testing process, the equivalent conicity would increase with running distance for unpolished rails.The main reason for poor contact between wheel and rail was found to be gauge angle worn and the camber worn rail has not been polished for a long time.

关键词

高速动车组 / 构架 / 钢轨异常磨耗 / 加速度报警 / 实验

Key words

High-Speed train / Bogie frame / Abnormal worn rail / Acceleration alarm / Field test

引用本文

导出引用
王晨1,邬平波1,罗世辉1,许自强2,马卫华1,董孝卿2. 钢轨异常磨耗对构架横向加速度影响研究[J]. 振动与冲击, 2019, 38(20): 244-251
WANG Chen1,WU Pingbo1,LUO Shihui1,XU Ziqiang2,MA Weihua1,DONG Xiaoqing2. A study on the effect of an abnormal worn rail on the lateral acceleration of a bogie frame[J]. Journal of Vibration and Shock, 2019, 38(20): 244-251

参考文献

[1] True H. The dynamics of a railway freight wagon wheelset with dry friction damping the suspension[J]. Vehicle System Dynamics, 2004, 38(2):159-168.
[2] Polach O, Nicklisch D. Wheel/rail contact geometry parameters in regard to vehicle behaviour and their alteration with wear[J]. Wear, 2016, 366-367:200-208.
[3] Polach O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011, 271(1-2):195-202.
[4] 朴明伟, 梁树林, 方照根,等. 高速转向架非线性与高铁车辆安全稳定性裕度[J]. 中国铁道科学, 2011, 32(3):86-92.
Mingwei P, Liang S, Fang Z, et al. The Non-Linearity of High-Speed Bogie and the Safety Stability Margin of High-Speed Railway Vehicles[J]. China Railway Science, 2011, 32(3):86-92.
[5] 罗世辉. 轨距对机车车辆稳定性影响的研究[J]. 中国铁道科学, 2010, 31(2):56-60.
Luo S. Study on the influence of the track gauge on vehicle yaw stability[J]. China Railway Science, 2010:717-731.
[6] Cui D, Zhang W, Tian G, et al. Designing the key parameters of EMU bogie to reduce side wear of rail[J]. Wear, 2016, 366-367:49-59.
[7] 崔大宾. 高速车轮踏面设计方法研究[D].西南交通大学,2013.
[8] Zhang B, Zeng J, Liu W. Research on stochastic stability and stochastic bifurcation of suspended wheelset[J]. Journal of Mechanical Science & Technology, 2015, 29(8):3097-3107.
[9] Zhang W, Zeng J, Li Y. A review of vehicle system dynamics in the development of high-speed trains in China[J]. International Journal of Dynamics & Control, 2013, 1(1):81-97.
[10] 周清跃,田常海,张银花,常崇义,侯茂锐.CRH_3型动车组构架横向失稳成因分析[J].中国铁道科学,2014,35(06):105-110.
Zhou Q, Tian C, Zhang Y, et al. Cause analysis for the lateral instability of CRH3 EMU framework[J]. Zhongguo Tiedao Kexue/china Railway Science, 2014, 35(6):105-110.
[11] 史红梅, 赵蓉, 余祖俊,等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10):24-28.
Shi H M, Rong Z, Zu-Jun Y U, et al. Detection method for wheel flats based on rail vibration responses analysis[J]. Journal of Vibration & Shock, 2016.[12] Goodall R M, Iwnicki S D. Non-linear dynamic techniques v. equivalent conicity methods for rail vehicle stability assessment[J]. Taylor & Francis, 2004.
[13] Gan F, Dai H, Gao H, et al. Wheel–rail wear progression of high speed train with type S1002CN wheel treads[J]. Wear, 2015, s 328–329:569-581.
[14] 付彬, 罗世辉, 许自强,等. 直线电机振动特性对车轮多边形问题的影响研究[J]. 振动与冲击, 2018, 37(1):150-155.
Bin F U, Luo S, Ziqiang X U, et al. Effects of the vibration characteristics of linear motors on the polygon wheel problem[J]. Journal of Vibration & Shock, 2018.
[15] Xingwen W U, Chi M. Parameters Study of Hopf Bifurcation in Railway Vehicle System[J]. Journal of Computational & Nonlinear Dynamics, 2015, 10(3).
[16] TSI L84-2008. Concerning a technical specification for interoperability relating to the rolling stock sub-system of the trains-European high-speed rail system [S].
[17] UIC-518-2009, Testing and approval of railway vehicles from the point of view of their dynamic behaviour safety-track fatigue running behaviour [S].
[18] 铁运[2008]28号.高速动车组整车实验规范.北京:中华人民共和国铁道部,2008.

PDF(2523 KB)

Accesses

Citation

Detail

段落导航
相关文章

/