船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究

焦甲龙1,赵玉麟1,张皓2,任慧龙2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 229-236.

PDF(3151 KB)
PDF(3151 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 229-236.
论文

船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究

  • 焦甲龙1,赵玉麟1,张皓2,任慧龙2
作者信息 +

Study on wave loads and slamming loads of a ship by large-scale model hydroelastic experiment

  • JIAO Jialong 1  ZHAO Yulin 1  ZHANG Hao 2  REN Huilong 2
Author information +
文章历史 +

摘要

波浪诱导船体梁的水弹性振动及外飘砰击载荷是船舶设计建造中所重点关注的结构强度及载荷响应问题。现有的船舶波浪载荷水池模型试验存在尺度效应明显、波浪环境不真实、模型航行范围受限等缺点。为此,本文提出了实际海浪环境下船舶大尺度分段自航模型的波浪载荷及砰击载荷试验技术,并详细介绍了大尺度分段模型水弹性试验设计及数据分析方法。本文首先介绍了弹性模型龙骨梁的设计及船体湿模态测试分析方法,进而基于近海测试数据分析了实海况下船舶波浪载荷与水弹性振动的短期预报及响应统计值,最后研究了三维海况下艏部砰击诱导的瞬态冲击载荷及全船颤振响应特性。

Abstract

The predictions of wave-induced hull girder hydroelastic vibrations and bow flare slamming loads are important for structural strength and load response issues during ship design and construction.The classical small-scale ship model wave load tests in the towing tank are associated with limitations such as pronounced scale effects, artificially generated waves, and limited model navigational range.The self-propelled large-scale model wave loads testing technique was proposed in this paper.The experimental setup and data analysis method were described in details.The design of backbone for the segmented model and vibration modal results were reported at first.Then wave-induced hull hydroelastic vibrations and impact loads were analyzed based on the large-scale model sea trial measurement data.The bow slamming loads and global whipping responses of hull in three-dimensional waves were finally analyzed.

关键词

船体振动 / 水弹性响应 / 波浪载荷 / 砰击载荷 / 分段模型试验

Key words

hull vibration / hydroelastic response / wave loads / slamming loads / segmented model test

引用本文

导出引用
焦甲龙1,赵玉麟1,张皓2,任慧龙2. 船舶波浪载荷与砰击载荷的大尺度模型水弹性试验研究[J]. 振动与冲击, 2019, 38(20): 229-236
JIAO Jialong 1 ZHAO Yulin 1 ZHANG Hao 2 REN Huilong 2. Study on wave loads and slamming loads of a ship by large-scale model hydroelastic experiment[J]. Journal of Vibration and Shock, 2019, 38(20): 229-236

参考文献

[1] 戴仰山,沈进威,宋竞正. 船舶波浪载荷[M]. 国防工业出版社,2007.
Dai YS, Shen JW, Song JZ. Ship Wave Loads[M]. National Defense Industry Press, 2007.
[2] Cui WC, Yang JM, Wu YS, et al. Theory of hydroelasticity and its application to very large floating structures[M]. Shanghai Jiao Tong University, 2007.
[3] Maron A, Kapsenberg G. Design of a ship model for hydro-elastic experiments in waves. International Journal of Naval Architecture and Ocean Engineering[J]. 2014, 6: 1130–1147.
[4] 陈占阳,李志鹏. 不同浪向下超大型船舶载荷响应特征的模型试验研究[J],振动与冲击. 2017, 36(19): 112–118.
Chen ZY, Li ZP. Experimental model analysis of load responses of ultra-large vessels under different direction waves[J], Journal of Vibration and Shock, 2017, 36(19): 112–118.
[5] 韩春生,郭京,焦甲龙,等. 实际海浪环境中舰船大尺度模型试验研究进展[J],舰船科学技术. 2017, 39(5): 1–5.
Han CS, Guo J, Jiao JL, et al. Review of large-scale model ship tests under actual sea conditions[J], Ship Science and Technology, 2017, 39(5): 1–5.
[6] 唐浩云,任慧龙,李辉,等. 三体船在迎浪不规则波中的运动和载荷试验研究[J],振动与冲击. 2017, 36(18): 140–147.
Tang HY, Ren HL, Li H, et al. Experimental study on the motion and load of a trimaran in irregular head waves[J], Journal of Vibration and Shock, 2017, 36(18): 140–147.
[7] Jacobi G, Thomas G, Davis MR, et al. An insight into the slamming behaviour of large high-speed catamarans through full-scale measurements[J]. Journal of Marine Science and Technology, 2014, 19(1): 15–32.
[8] Jiao JL, Ren HL, Sun SZ, et al. A state-of-the-art large scale model testing technique for ship hydrodynamics at sea[J]. Ocean Engineering, 2016, 123: 174–190.
[9] Grigoropoulos GJ, Katsaounis GM. Measuring procedures for seakeeping tests of large-scaled ship models at sea[C]// 13th IMEKO TC4 Symposium on Measurements for Research and Industrial Applications, 2004: 135–139.
[10] Sun SZ, Li JD, Zhao XD, et al. Remote control and telemetry system for large-scale model test at sea[J]. Journal of Marine Science and Application, 2010, 9(3): 280–285.
[11] Fossati F, Bayati I, Orlandini F, et al. A novel full scale laboratory for yacht engineering research[J]. Ocean Engineering, 2015, 104: 219–237.
[12] Camilleri J, Taunton DJ, Temarel P. Full-scale measurements of slamming loads and responses on high-speed planing craft in waves[J]. Journal of Fluids and structures, 2018, 81: 201–229.
[13] Jiao JL, Ren HL, Sun SZ, et al, Reproduction of ocean waves for large-scale model seakeeping measurement: The case of coastal waves in Puerto Rico & Virgin Islands and Gulf of Maine[J]. Ocean Engineering, 2018, 153: 71–87.
[14] Jiao JL, Sun SZ, Li JD, et al. A comprehensive study on the seakeeping performance of high speed hybrid ships by 2.5D theoretical calculation and different scaled model experiments[J]. Ocean Engineering, 2018, 160:197–223.
[15] 李辉. 船舶波浪载荷的三维水弹性分析方法研究[D]. 哈尔滨:哈尔滨工程大学,2009
Li H. 3-D Hydroelasticity Analysis Method for Wave Loads of Ships[D]. Harbin: Harbin Engineering University, 2009.
[16] 焦甲龙,任慧龙,杨虎,等. 分段模型波浪载荷试验槽型龙骨梁设计与研究[J],振动与冲击. 2015, 34(14): 11–15.
Jiao JL, Ren HL, Yang H, et al. Design of channel-section backbone of segmented model for wave loads experiment[J], Journal of Vibration and Shock, 2015, 34(14): 11–15.
[17] Nielsen UD, Stredulinsky DC. Sea state estimation from an advancing ship – A comparative study using sea trial data[J]. Applied Ocean Research, 2012, 34: 33–44.
[18] 姚熊亮. 船体振动[M]. 哈尔滨工程大学出版社,2004.
Yao XL. Ship Vibration[M]. Harbin Engineering University Press, 2004.

PDF(3151 KB)

Accesses

Citation

Detail

段落导航
相关文章

/