超声电机在冲击环境中的性能研究

孙栋1,唐玉娟2,王炅1,王新杰1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 44-50.

PDF(2122 KB)
PDF(2122 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 44-50.
论文

超声电机在冲击环境中的性能研究

  • 孙栋1,唐玉娟2,王炅1,王新杰1
作者信息 +

Analysis of characteristics of an ultrasonic motor in shock environment

  •  SUN Dong1,TANG Yu-juan2,WANF Jiong1,WANG Xin-jie1
Author information +
文章历史 +

摘要

研究了冲击载荷对旋转型超声电机性能的影响。基于有限元方法,分析了不同冲击环境下超声电机的动态响应过程,分析过程中的关键材料选取了更接近工程实际的双线性随动硬化模型;通过实验方法对电机进行冲击测试,分析了冲击环境对电机机械性能与定子振动特性的影响。结果表明:转子的变形分为转子中心的下沉与转子边缘的扭曲两种状态;除了冲击幅值,冲击脉宽也会对结构的变形产生影响;在冲击环境中,超声电机的机械性能会降低甚至完全失效,而定子的振动特性也会产生畸变;橡胶能够在冲击环境中对超声电机进行有效的保护。

Abstract

The influence of shock environment on an ultrasonic motor was studied.The dynamic response of the ultrasonic motor under different impact load was analyzed based on the finite element method.The material model of key components was bilinear isotropic hardening model during the analysis process.The influence of shock environment on mechanical characteristic of the ultrasonic motor and vibration characteristic of stator was analyzed via experiment.The analysis results show that the deformation of the rotor can be divided into two states, the sinkage of rotor’s center and twisting of rotor.Bsides the amplitude, the impact duration also has influence on the deformation of the structure.The vibration characteristic of stator will have distortion besides the reduction of mechanical characteristic of the ultrasonic motor in shock environment.Rubber can protect the ultrasonic motor in shock environment effectively.

关键词

超声电机 / 冲击 / 机械特性 / 振动特性

Key words

ultrasonic motor / shock environment / mechanical characteristic / vibration characteristic

引用本文

导出引用
孙栋1,唐玉娟2,王炅1,王新杰1. 超声电机在冲击环境中的性能研究[J]. 振动与冲击, 2019, 38(20): 44-50
SUN Dong1,TANG Yu-juan2,WANF Jiong1,WANG Xin-jie1. Analysis of characteristics of an ultrasonic motor in shock environment[J]. Journal of Vibration and Shock, 2019, 38(20): 44-50

参考文献

[1] Uchino K, Cagatay S, Koc B, et al. Micro piezoelectric ultrasonic motors[J]. Journal of electroceramics, 2004, 13(1): 393-401.
[2] Uchino K. Piezoelectric ultrasonic motors: overview[J]. Smart materials and structures, 1998, 7(3): 273-285.
[3] Uchino K. Piezoelectric actuators 2006[J]. Journal of Electroceramics, 2008, 20(3-4):301-311.
[4] Xu D, Liu Y, Liu J, et al. Developments of a piezoelectric actuator with nano-positioning ability operated in bending modes[J]. Ceramics International, 2017, 43: s21-26.
[5] Kubota T, Tada K, Kunii Y. Smart manipulator actuated by Ultra-Sonic Motors for lunar exploration[C]// IEEE International Conference on Robotics and Automation. IEEE, 2008:3576-3581.
[6] Bao X, Barcohen Y, Nesnas I A. Robot manipulator technologies for planetary exploration[C]// Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3668.
[7] Yamaguchi D, Kanda T, Suzumori K. Bolt-Clamped Langevin-Type Transducer for Ultrasonic Motor used at Ultralow Temperature[J]. Journal of Advanced Mechanical Design Systems & Manufacturing, 2012, 6(1):104-112.
[8] Li X, Chen J, Chen Z, et al. A high-temperature double-mode piezoelectric ultrasonic linear motor[J]. Applied Physics Letters, 2012, 101(7): 299-285.
[9] Morita T, Takahashi S, Asama H, et al. Rotational feedthrough using an ultrasonic motor and its performance in ultra high vacuum conditions[J]. Vacuum, 2003, 70(1): 53-57.
[10] Diwiny M E, Sayed A H E, Hassanen E S, et al. Implementation of anti stealth technology for safe operation of unmanned aerial vehicle[C]// Digital Avionics Systems Conference. IEEE, 2014:7E2-1-7E2-12.
[11] Tang Y, Yang Z, Wang X, et al. Research on the piezoelectric ultrasonic actuator applied to smart fuze safety system[J]. International Journal of Applied Electromagnetics & Mechanics, 2017, 53(2):1-11.
[12] 任金华, 陈超. 高过载环境下旋转型行波超声电机的动力学分析与设计[C]// 全国振动利用工程学术会议暨第四次全国超声电机技术研讨会. 2012.
REN Jin-hua, CHEN Chao.Dynamic analysis and design of the travelling wave type rotary ultrasonic motors under overload environment[C]//National Symposium on Vibration Engineering and Fourth National Ultrasonic Motor Technology Seminar. 2012
[13] Ren J, Chen C, Zhou J. Research on the overload characteristic of Traveling Wave Type Rotary Ultrasonic Motor[C]// 2013 Symposium on Piezoelectricity, Acoustic Waves and Device Applications. 2013: pp.1-4.
[14] Hou X, Lee HP, Ong CJ, et al. Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses[J]. Advances in Computational Design, 2016, 1(4): 357-370.
[15]唐玉娟,王 炅. 典型引信环境力对压电驱动器的影响研究[J]. 振动与冲击, 2013, 32(19):170-175.
Tang Yu-juan, Wang Jiong. Influence of typically environmental force of a fuze on a piezoelectric actuator[J]. Journal of Vibration & Shock, 2013, 32(19):170-175.
[16] Sun D, Wang X J, Chen C, et al. Dynamic Response Mechanism of Rotary Type Ultrasonic Motor Under High Impact Load[C]// ASME 2016 International Mechanical Engineering Congress and Exposition. 2016:V04AT05A026.
[17] Frangi A, Corigliano A, Binci M, et al. Finite element modelling of a rotating piezoelectric ultrasonic motor[J]. Ultrasonics, 2005, 43(9): 747-755.
[18] Hagood N W, McFarland A J. Modeling of a piezoelectric rotary ultrasonic motor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(2): 210-224.

PDF(2122 KB)

Accesses

Citation

Detail

段落导航
相关文章

/