菱形颗粒冲击延性材料的运动行为及凹坑形态研究

杜明超,李增亮,董祥伟,孙召成,范春永,车家琪

振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 97-105.

PDF(1581 KB)
PDF(1581 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (20) : 97-105.
论文

菱形颗粒冲击延性材料的运动行为及凹坑形态研究

  • 杜明超,李增亮,董祥伟,孙召成,范春永,车家琪
作者信息 +

A study on the kinematic behavior and crater shape of rhomboid particle impacting ductile material

  • DU Mingchao,LI Zengliang,DONG Xiangwei,SUN Zhaocheng,FAN Chunyong,CHE Jiaqi
Author information +
文章历史 +

摘要

针对菱形颗粒的冲蚀磨损过程建立了基于拉格朗日法的耦合数值计算模型,通过模型分析了不同冲击速度vi、冲击角αi和方位角θi下菱形颗粒冲击延性材料的运动学行为和凹坑轮廓形态。结果表明:冲击角和方位角是决定颗粒旋转的关键因素,但会受冲击速度的影响发生变化。冲击速度对前旋颗粒的旋转方向和运动行为影响较小,产生的凹坑轮廓基本不变;对“后旋”颗粒的运动行为影响较大,存在某一切削速度范围55m/s-100m/s,当vi在该范围内时,延性材料表面发生切屑分离,当vi小于或大于该范围,均无切屑分离现象发生,只发生材料堆积,但形成材料堆积的原因不同,冲击速度小时初始动能低,不足以将材料切断剔除,被“挖掘”的材料堆积在凹坑表面;冲击速度大时颗粒法向插入深,颗粒出现“挖掘”和“微切削”的综合作用,在“微切削”的作用下产生细长切屑堆积在凹坑前面。低冲击角和大方位角的临界冲击在不同冲击速度下产生的颗粒运动行为和凹坑轮廓与“后旋”冲击产生的规律一致,高冲击角和小方位角的临界冲击在不同冲击速度下产生的颗粒运动行为和凹坑轮廓与前旋冲击产生的规律一致。

Abstract

A coupled numerical simulation model based on the Lagrange method was established for the erosion wear process of rhomboid particles, and the kinematic behavior and crater shape of rhomboid particle impact ductile materials at different impact velocity vi, impact angle αi and orientation angle θi were analyzed by the model.The results show that the impact angle and orientation angle are the key factors that determine the rotation of particles, but will be affected by the impact velocity.From the results, it is known that the impact velocity has little effect on the rotation direction and the kinematic behavior of the forward rotating particles, and the crater profile generated by the particles was almost unchanged.On the contrast, the impact velocity has great influence on the kinematic behavior of the backward particles; there is a cutting speed range from 55 m/s to 100 m/s.When vi is within this range, chip separation occurs on the ductile material surface.When vi is smaller or larger than this range, no chip separation occurs, but the material pile-up happens.The reasons for the material pile-up in the two cases are different.When the impact velocity is small, the initial kinetic energy is low, which is not enough to cut off the material, and the material accumulated on the surface of the crater; when the impact velocity is large, the normal insertion of the particles is deep, and the particles have the combined effects of “dig” and “micro-cutting”.Under the effect of “micro-cutting”, slender chips accumulated on the surface of the crater.The critical impact of low impact angle and large orientation angle generated particle kinematic behavior and crater profile under different impact velocity is consistent with the law of backward impact, and the critical impact of high impact angle and small orientation angle produced particle kinematic behavior and crater profile under different impact velocity is consistent with the law of forward impact.

关键词

菱形颗粒 / 冲蚀磨损 / 耦合数值计算模型 / 颗粒旋转 / 冲击速度

Key words

 rhomboid particle / erosion wear / coupled numerical model / particle rotation / impact velocity

引用本文

导出引用
杜明超,李增亮,董祥伟,孙召成,范春永,车家琪. 菱形颗粒冲击延性材料的运动行为及凹坑形态研究[J]. 振动与冲击, 2019, 38(20): 97-105
DU Mingchao,LI Zengliang,DONG Xiangwei,SUN Zhaocheng,FAN Chunyong,CHE Jiaqi. A study on the kinematic behavior and crater shape of rhomboid particle impacting ductile material[J]. Journal of Vibration and Shock, 2019, 38(20): 97-105

参考文献

[1] 郭源君,李文斌. 水机过流面的粒子冲蚀强度分析与缓冲涂层试验[J]. 振动与冲击,2002, 21(1): 75-76.
GUO Yuan-jun, LI Wen-bin. Abrasion Strength Analysis of Hydraulic Turbine Blade Surface and Buffer Coating Testing [J].Journal of Vibration and Shock, 2002, 21(1): 75-76.
[2] 陆朝晖, 卢义玉, Michael,等. 截断式脉冲射流流场结构模拟与冲蚀硬岩能力分析[J]. 振动与冲击, 2017, 36(19): 180-185.
LU Zhao-hui, LU Yi-yu, Michael Hood, et al. Numerical Simulation and Analysis on Flow Field Structure and Hard Rock Erosion Potential of Disc-slotted Pulse Water Jet[J]. Journal of Vibration and Shock, 2017, 36(19): 180-185.
[3] 王安宇, 莫继良, 王正国,等. 喷砂表面处理控制滑动摩擦尖叫噪声[J]. 中国表面工程, 2013, 26(4):44-49.
WANG An-yu, MO Ji-liang, WANG Zheng-guo, et al. Controlling Friction-induced Squeal by Surface Sandblasting Treatment[J]. China Surface Engineering, 2013, 26(4):44-49.
[4] Azimian M, Lichti M, Bart H J. Investigation of Particulate Flow in a Channel by Application of CFD, DEM and LDA/PDA [J]. Open Chemical Engineering Journal, 2014, 8(1):1-11.
[5] Finnie I. Erosion of surfaces by solid particles [J]. Wear, 1960, 3(2):87-103.
[6] Hutchings I M. Deformation of metal surfaces by the oblique impact of square plates [J]. International Journal of Mechanical Sciences, 1977, 19(1):45, IN7, 47-46, IN8, 52.
[7] Hutchings I M, Macmillan N H, Rickerby D G. Further studies of the oblique impact of a hard sphere against a ductile solid [J]. International Journal of Mechanical Sciences, 1981, 23(11):639-646.
[8] Papini M, Dhar S. Experimental verification of a model of erosion due to the impact of rigid single angular particles on fully plastic targets [J]. International Journal of Mechanical Sciences, 2006, 48(5):469-482.
[9] Takaffoli M, Papini M. Finite element analysis of single impacts of angular particles on ductile targets [J]. Wear, 2009, 267(1–4):144-151.
[10] Babets K, Geskin E. Numerical study of the turbulent flow inside a pure waterjet [C]. Proceedings of 2001 WJTA American Waterjet Conference. Minneapolis.2001:19-25.
[11] Ahmed D H, Siores E, Chen F L. Numerical simulation of abrasive waterjet [C]. Proceedings of 2001 WJTA American Waterjet Conference.2001:17-18.
[12] 高激飞, 胡寿根, 宁原林. 基于CFD的淹没磨料射流的数值模拟与流动特性研究[J]. 中国机械工程, 2003, 14(14):1188-1191.
GAO Ji-fei, HU Shou-gen, NING Yuan-lin. Numerical simulation and flow characteristics of submerged abrasive waterjet based on CFD [J]. China Surface Engineering, 2003, 14(14):1188-1191.
[13] Campbell J, Vignjevic R. Development of lagrangian hydrocode modelling for debris impact damage prediction[J]. International Journal of Impact Engineering, 1997, 20(1–5):143-152.
[14] Liu B G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. World Scientific, 2004.
[15] Dong X W, Liu G R, Li Z, et al. A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles [J]. Tribology International, 2016, 95:267-278.
[16] Dong X, Li Z, Feng L, et al Modeling, simulation, and analysis of the impact(s) of single angular-type particles on ductile surfaces using smoothed particle hydrodynamics [J]. Powder Technology, 2017, 318:363-382.
[17] Takaffoli M, Papini M. Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics [J]. Wear, 2012, 274-275(3):50-59.
[18] 徐爽, 朱浮声, 张俊. 离散元法及其耦合算法的研究综述[J]. 力学与实践, 2013, 35(1):8-14.
XU Shuang, ZHU Fu-sheng, ZHANG Jun. A overview of the discrete element method and its coupling algorithms [J]. Mechanics and Practice. 2013, 35(1):8-14.
[19] P.W. Randles, L.D. Libersky. Smoothed Particle Hydrodynamics: Some recent improvements and applications [J]. Computer Methods in Applied Mechanics & Engineering, 1996, 139(1–4):375-408.
[20] Vila J P. SPH Renormalized Hybrid Methods for Conservation Laws: Applications to Free Surface Flows [J]. Lecture Notes in Computational Science & Engineering, 2005, 43:207-229.
[21] ABAQUS ABAQUS User's Manual Release 6.14, 2014.
[22] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. Proceedings of the 7th International Symposium on Ballistics . 1983, 21: 541-547.
[23] Guo Y B, Wen Q, Horstemeyer M F. An internal state variable plasticity-based approach to determine dynamic loading history effects on material property in manufacturing processes [J]. International Journal of Mechanical Sciences, 2005, 47(9): 1423-1441.
[24] Kay G. Failure modeling of titanium 6AI-4V and aluminum 2024-T3 with the Johnson-Cook material model [M]. Office of Aviation Research, Federal Aviation Administration , 2003.
[25] Azimian M, Schmitt P, Bart H J. Numerical investigation of single and multi impacts of angular particles on ductile surfaces[J]. Wear, 2015, 342-343:252-261.

PDF(1581 KB)

Accesses

Citation

Detail

段落导航
相关文章

/