含间隙–弹性约束振动系统周期冲击振动多样性及规律特征

尹凤伟1,2,罗冠炜1,2,同长虹3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 1-10.

PDF(2123 KB)
PDF(2123 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 1-10.
论文

含间隙–弹性约束振动系统周期冲击振动多样性及规律特征

  • 尹凤伟1,2,罗冠炜1,2,同长虹3
作者信息 +

Diversity and regularity of periodic vibro-impact of a vibration system with clearance-elastic constraints

  • YIN Fengwei1,2,LUO Guanwei1,2,TONG Changhong3
Author information +
文章历史 +

摘要

基于一类带有间隙–弹性约束的两自由度受迫振动系统,通过多目标和多参数协同仿真分析,研究了该类非光滑振动系统周期冲击振动的多样性及分岔特征。分析了系统的动力学特性与模型参数的关联关系,讨论了带有相同间隙阈值的弹性约束受迫振动系统在低频域内的基本周期冲击振动群及其发生域的分布特征,发现了相邻基本周期冲击振动相互转迁的不可逆性及其诱发的奇异点、迟滞转迁域和非迟滞转迁域,揭示了非迟滞转迁域内亚谐冲击振动的模式类型及规律特征。对比分析了带有相同间隙阈值和不同间隙阈值的弹性约束振动系统的周期冲击振动的模式类型和分布规律的差异性,进一步揭示了带有不同间隙阈值的弹性约束振动系统低频域内的基本周期冲击振动群的模式类型及其涌现规律。该研究为开展含间隙-约束机械系统的动态设计与协同优化提供科学依据。

Abstract

Based on the mechanical model of a two-degree-of-freedom forced vibration system with clearance-elastic constraints, the diversity and bifurcation characteristics of periodic impulsive vibration of this kind of non-smooth vibration system were studied by multi-objective and multi-parameter co-simulation analysis.The results reveals the relationship between the dynamic characteristics of the system and the parameters of the model.The fundamental periodic vibro-impact groups and its distribution characteristics in small frequency domain of a vibration system with the same clearance threshold constraints were discussed.The singularities, hysteretic and non-hysteretic transition regions induced by the irreversibility of the mutual transition of adjacent fundamental periodic vibro-impact were analyzed, and the mode types and regularities of sub-harmonic vibro-impact in non-hysteretic transition region were revealed.The difference of mode type and distribution regularity of periodic vibro-impact with the same clearance threshold and different clearance threshold constraints was compared.Furthermore, the mode types and emergence rules of fundamental vibro-impact groups in small frequency domain of elastically constrained vibration systems with different clearance thresholds were revealed.The calculation and analysis above may be provided scientific basis for dynamic design and collaborative optimization of mechanical systems with clearances and constraints.

关键词

间隙 / 周期冲击振动 / 分岔 / 多样性

Key words

clearance / periodic vibro-impact / bifurcation / diversity

引用本文

导出引用
尹凤伟1,2,罗冠炜1,2,同长虹3. 含间隙–弹性约束振动系统周期冲击振动多样性及规律特征[J]. 振动与冲击, 2020, 39(24): 1-10
YIN Fengwei1,2,LUO Guanwei1,2,TONG Changhong3. Diversity and regularity of periodic vibro-impact of a vibration system with clearance-elastic constraints[J]. Journal of Vibration and Shock, 2020, 39(24): 1-10

参考文献

[1]  Shaw S W , Holmes P J. A periodically forced piecewise linear oscillator [J]. Journal of Sound and Vibration, 1983, 90(1): 129-155.
[2]  Peterka F . Behaviour of impact oscillator with soft and preloaded stop[J]. Chaos, Solitons and Fractals, 2003, 18(1):79-88.
[3]  乐源, 缪鹏程. 一类碰撞振动系统的激变和拟周期-拟周期阵发性[J]. 振动与冲击, 2017, 36(07): 1-7+20.
LE Yuan, MIAO Pengcheng. Catastrophe and quasi-periodic quasi-periodic paroxysms of a class of impact vibration systems [J]. Journal of Vibration and Shock, 2017, 36(07): 1-7+20.
[4]  Zhang Y X, Luo G W. Detecting unstable periodic orbits and unstable quasiperiodic orbits in vibro-impact systems [J]. International Journal of Non-Linear Mechanics, 2017, 96: 12-21.
[5]  Peterka F , Vacík J. Transition to chaotic motion in mechanical systems with impacts[J]. Journal of Sound and Vibration, 1992, 154(1):95-115.
[6]  Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. Journal of Sound and Vibration, 1991, 145(2): 279-297.
[7]  Luo G W, Lv X H. Controlling bifurcation and chaos of a plastic impact oscillator [J]. Nonlinear Analysis: Real World Applications, 2009, 10(4): 2047-2061.
[8]  Luo G W, Zhu X F, Shi Y Q. Dynamics of a two–degree–of freedom periodically–forced system with a rigid stop: diversity and evolution of periodic–impact motions[J]. Journal of Sound and Vibration, 2015, 334: 338–362.
[9]  Wagg D J , Bishop S R . Dynamics of a two degree of freedom vibro-impact system with multiple motion limiting constraints[J]. International Journal of Bifurcation and Chaos, 2004, 14(01):119-140.
[10] Wagg D J . Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator[J]. Chaos, Solitons and Fractals, 2004, 22(3):541-548.
[11] Wagg D J . Multiple non-smooth events in multi-degree-of- freedom vibro-impact systems[J]. Nonlinear Dynamics, 2006, 43(1-2):137-148.
[12] Wagg D J . Periodic sticking motion in a two-degree-of- freedom impact oscillator[J]. International Journal of Non- Linear Mechanics, 2005, 40(8):1076-1087.
[13] Nordmark A B, Piiroinen P T, Simulation and stability analysis of impacting systems with complete chattering[J]. Nonlinear Dynamics 2009, 58(): 85-106.
[14] Csaba Hős, Champneys A R. Grazing bifurcations and chatter in a pressure relief valve model[J]. Physica D: Nonlinear Phenomena, 2012, 241(22):0-0.
[15] 张艳龙, 唐斌斌, 王丽, et al. 动摩擦作用下含间隙碰撞振动系统的动力学分析[J]. 振动与冲击, 2017(24).
 ZHANG Yanlong, TANG Binbin, WANG Li, et al. Dynamic analysis of impact vibration system with clearance under dynamic friction [J]. Journal of Vibration and Shock,  2017, 36(24): 58-63.
[16] 吕小红,罗冠炜. 碰撞-渐进振动系统的周期振动与分岔[J].振动与冲击, 2018, 37(06): 162-167.
LV Xiaohong, LUO Guanwei. Periodic Vibration and Bifurcation of Collision-Asymptotic Vibration System [J]. Journal of Vibration and Shock, 2018,37(06): 162-167.
[17] Luo G W, Shi Y Q, Zhu X F, Du S S. Hunting patterns and bifurcation characteristics of a three-axle locomotive bogie system in the presence of the flange contact nonlinearity [J]. International Journal of Mechanical Sciences, 2018, 136: 321–338.
[18] Byrtus M , Vladimír Z. On modeling and vibration of gear drives influenced by nonlinear couplings[J]. Mechanism & Machine Theory, 2011, 46(3): 375-397.
[19] Ma Y , Ing J , Banerjee S , et al. The nature of the normal form map for soft impacting systems[J]. International Journal of Non-Linear Mechanics, 2008, 43(6):504-513.
[20] Kundu S , Banerjee S , Ing J , et al. Singularities in soft-impacting systems[J]. Physica D Nonlinear Phenomena, 2012, 241(5):553-565.
[21] Blazejczyk-Okolewska B , Czolczynski K , Kapitaniak T . Hard versus soft impacts in oscillatory systems modeling[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5):1358-1367.
[22] 金栋平, 胡海岩. 两柔性梁碰撞振动类型的实验研究. 实验力学, 1999, 14(2): 129-135.
JIN Dongping, HU Haiyan. An experimental study on possible types of vibro-impacts between two elastic beams[J]. Journal of Experimental Mechanics, 1999, 14(2): 129-135.
[23] Long X H, Liu J B, Meng G.. Nonlinear dynamics of two harmonically excited elastic structures with impact interaction[J]. Journal of Sound and Vibration, 2014, 333: 1430-1441.

PDF(2123 KB)

986

Accesses

0

Citation

Detail

段落导航
相关文章

/