樊红卫1,2,张旭辉1,2,曹现刚1,2,万翔1,2,杨一晴1
振动与冲击. 2020, 39(24): 194-204.
目前,煤炭依然是我国主体能源,煤矿井下环境复杂恶劣,使煤矿设备故障频发,对采煤安全造成严重威胁。目前机械故障诊断技术以振动为主要手段,研究涉及动力学与故障机理、信号处理与特征提取、基于振动数据的智能诊断等。故障机理研究为信号特征提取和智能诊断提供基础,主要研究轴承、齿轮及机械系统在故障状态下的振动规律,特别是频率构成。信号处理算法的目的在于从实测信号中提取反映故障信息的成分,根据信号特点主要包括频谱分析、小波分析和经验模态分解等。基于数据的智能诊断方法发展迅速,其主要对监测数据进行分类、聚类和回归分析,根据数据特点有支持向量机、浅层神经网络和深度学习方法等,种群智能算法常用于这些方法的参数优化。研究表明煤矿设备机械故障诊断研究滞后,亟需加强理论研究、算法开发和工程应用,为我国智慧矿山和煤炭绿色、安全和高效开发提供支持。