一种传感器优化布置的多能量参数改进有效独立法

范恒承,余岭

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 25-31.

PDF(1272 KB)
PDF(1272 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 25-31.
论文

一种传感器优化布置的多能量参数改进有效独立法

  • 范恒承,余岭
作者信息 +

An improved effective independent method based on multi energy parameters for optimal sensor placement

  • FAN Hengcheng,YU Ling
Author information +
文章历史 +

摘要

为解决结构健康监测中的传感器优化布置问题,针对有效独立法存在的易丢失能量较大测点和能量法存在的测点易过于集中在能量较大位置从而导致结构重要模态信息丢失的不足,对有效独立法和能量法进行综合考虑,在有效独立法的基础上,同时引入模态动能和模态应变能修正有效独立法,提出一种考虑多能量参数的改进有效独立法(EI-MEP)。通过空间桁架结构的数值仿真算例以及矩形截面悬臂梁的实验验证,并结合评价准则对有效独立法及三种现有改进方法进行比对研究。结果表明,该方法具有良好的低阶模态识别的准确性,在选取少量传感器数目时具有优势,能保证测量振型向量具有较大的线性独立性,在五种方法中最为有效。

Abstract

To solve the problem that the effective independent method is easy to lose the higher energy measurement points and the energy method is easy to concentrate on the higher energy measurement points, which leads to the loss of the important modal information of the structure in the optimal sensor placement of structural health monitoring, an improved effective independent method with multi energy parameters (EI-MEP) was proposed by introducing the modified effective independent method of modal kinetic energy and modal strain energy.The EI-MEP method proposed in this paper, the effective independent method, and three existing improved methods were compared by using the evaluation criteria through numerical simulations on a space truss structure and experimental verifications on a cantilever beam with rectangular section.The results show that, the EI-MEP method not only has good accuracy in low-order modal identification, but also has advantages in selecting a small number of sensors, which can ensure the greater linear independence of the mode vector, and is the most effective method among these five optimal sensor placement methods.

关键词

传感器优化布置 / 有效独立法 / 能量参数 / 模态分析

Key words

optimal sensor placement / effective independence method / energy parameter / modal analysis

引用本文

导出引用
范恒承,余岭. 一种传感器优化布置的多能量参数改进有效独立法[J]. 振动与冲击, 2020, 39(24): 25-31
FAN Hengcheng,YU Ling. An improved effective independent method based on multi energy parameters for optimal sensor placement[J]. Journal of Vibration and Shock, 2020, 39(24): 25-31

参考文献

[1] Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure [J]. Engineering Structures, 2005, 27: 1488-1497.
[2] Yu L, Chan T H T. Recent research on identification of moving loads on bridges [J]. Journal of Sound and Vibration, 2007, 305(1-2):3-21.
[3] 李东升,张莹,任亮,等. 结构健康监测中的传感器布置方法及评价准则[J]. 力学进展, 2011 (01): 39-50.
Li Dongsheng, Zhang Ying, Ren Liang, et al. The sensor placement method and evaluation criteria for structural health monitoring, [J]. Advancesin Mechanics, 2011 (01): 39-50.
[4] 尹涛. 一种基于信息熵的分布参数结构传感器/激励器优化布置方法[J]. 振动与冲击, 2014,33(22):51-57+66.
Yin Tao. Probabilistic approach for optimal sensor/actuator configuration of distributed-parameter systems based on information entropy [J]. Journal of Vibration and Shock, 2014,33(22):51-57+66.
[5] Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures [J]. Journal of Guidance: Control and dynamics, 1991, 14(2):251-259.
[6] Schedlinski C, Link M . An approach to optimal pick-up and exciter placement [C]. Proceedings of the 14st International Modal Analysis Conference, 1996.
[7] Heo G, Wang M L, Satpathi D. Optimal transducer placement for health monitoring of long span bridge [J]. Soil Dynamics & Earthquake Engineering, 1997, 16(7-8):495-502.
[8] 张宏伟,徐世杰,黄文虎. 作动器/传感器配置优化的遗传算法应用[J]. 振动工程学报, 1999(04): 93-98.
Zhang Hong-wei, Xu Shi-jie, Huang Wen-hu. Global optimization of actuators/sensors placement using a float-encoding genetic algorithm[J]. Journal of Vibration Engineering, 1999(04): 93-98.
[9] 田莉,陈换过,祝俊,等. 基于自适应模拟退火遗传算法的传感器优化配置研究[J]. 振动工程学报, 2012,25(03): 238-243.
Tian Li, Chen Huan-guo, Zhu Jun, et al. A study of optimal sensor placement based on the improved adaptive simulated annealing genetic algorithms[J]. Journal of Vibration Engineering, 2012, 25(03): 238-243.
[10] 杨振伟,周广东,伊廷华,等.基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J].工程力学,2019,36(03):63-70.
Yang Zhen-Wei, Zhou Guang-dong, Yi Ting-hua, et al. Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics, 2019,36(03):63-70.
[11] Yi TH, Li HN, Zhang XD. Health monitoring sensor placement optimization for Canton Tower using immune monkey algorithm[J]. Structural Control & Health Monitoring, 2015, 22(1):123-138.
[12] Sunca F, Okur FY, Altunisik AC, et al. Optimal Sensor Placement for Laminated Composite and Steel Cantilever Beams by the Effective Independence Method[OL]. Structural Engineering International, https://doi.org/10.1080/10168664.2019.1704202
[13] Leyder C, Dertimanis V, Frangi A, et al. Optimal sensor placement methods and metrics-comparison and implementation on a timber frame structure[J]. Structure and Infrastructure Engineering, 2018, 14(7): 997-1010.
[14] 詹杰子, 余岭. 传感器优化布置的有效独立-改进模态应变能方法[J]. 振动与冲击, 2017, 36(1):82-87.
Zhan Jie-zi, Yu Ling. An effective independenceimproved modal strain energy method for optimal sensor placement[J]. Journal of Vibration and Shock, 2017, 36(1):82-87.
[15] 孙红春, 胥勇. 砂轮划片机模态测试中的传感器测点优化研究[J]. 振动与冲击, 2017, 36(5): 187-191.
Sun Hong-chun, Xu Yong. Optimal placement of sensors for modal testing of dicing saws[J]. Journal of Vibration and Shock, 2017, 36(5): 187-191.
[16] Imamovic N. Model validation of large finite element model using test data[D]. Imperial College, London, 1998.
[17] 杨雅勋,郝宪武,孙磊. 基于能量系数-有效独立法的桥梁结构传感器优化布置[J]. 振动与冲击, 2010, 029(011): 119-123, 134.
Yang Ya-xun, Hao Xian-wu, Sun Lei. Optimal sensor placement of bridge structure based on energy coefficient-effective independence method[J]. Journal of Vibration and Shock, 2010, 29(11): 119-123.
[18] 刘伟,高维成,李惠,等. 基于有效独立的改进传感器优化布置方法研究[J]. 振动与冲击, 2013, 32(6):54-62.
Liu Wei, Gao Wei-cheng, Li Hui, et al. Study of improved optimal sensor placement methods based on effective independence[J]. Journal of Vibration and Shock, 2013, 32(6): 54-62.
[19] Friswell M I, Mottershead J E. Finite element model updating in structural dynamics[M]. Kluwer Academic Publishers, 1995.
[20] Golub G, Van Loan C. Matrix computation[M]. John Hopkins University Press, 1989.
[21] 余岭,万祖勇,朱宏平,等. 基于PSO算法的结构模型修正与损伤检测[J]. 振动与冲击, 2006(05):37-39,53,190.
Yu Ling, Wan Zu-yong, Zhu Hong-ping, et al. Structural model updating and damage detection through particle swarm optimization[J]. Journal of Vibration and Shock, 2006(05):37-39,53,190.

PDF(1272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/