基于AR-SK的北美鹅掌楸原木声信号特征参数提取及质量分等

徐锋,瞿玉莹

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 99-106.

PDF(1738 KB)
PDF(1738 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 99-106.
论文

基于AR-SK的北美鹅掌楸原木声信号特征参数提取及质量分等

  • 徐锋,瞿玉莹
作者信息 +

A feature extraction and quality grading method of acoustic signals generated from yellow poplar (liriodendron tulipifera) logs based on AR-SK

  • XU Feng,QU Yuying
Author information +
文章历史 +

摘要

阔叶材原木的质量评估可以为行业提供最优的阔叶材资源利用价值,然而因缺陷声信号的非平稳性和缺陷类型特征的重叠性,有效的质量评估声参数非常有限。基于此,提出一种基于自回归模型(AR)和谱峭度(SK)相结合的特征声参数提取与分等方法。利用AR线性滤波器滤除声信号中周期平稳成分,并对包含缺陷信息的残差信号进行短时傅里叶变换,计算其谱峭度值并定位最大谱峭度所在的频带,以其频带的中心频率和带宽设计滤波器对残差信号进行滤波以获取原木主要缺陷信号分量,计算该信号分量的峭度值,将其作为表征声信号的特征参数对北美鹅掌楸原木进行质量分等。样本原木的实际锯切结果显示,基于AR-SK的预测分等中,高质量原木组中的高等级板材率为77.2%,而低质量组中的高等级板材率为21.8%。与传统的声速分等相比,高质量组中的高等级板材率提高了33%以上,而低质量组中的高等级板材率降低了约26%。研究结果表明,所提方法能有效分离缺陷信号成分并对该原木质量进行较精确分等。

Abstract

Aiming at the insufficient acoustic parameters in quality assessment of hardwood logs due to the non-stationary features of acoustic signals and the overlapping of defect features, a method for feature extraction and quality grading was proposed based on the autoregressive model (AR) and spectral kurtosis (SK).An AR-based linear filter was applied to filter periodic deterministic components from original signals according to the Akaike information criterion, and the residual signal containing the defect information was decomposed by the short-time Fourier transform for acquiring the SK values of sub-band components.Then, a filter was designed to filter the residual signal further for obtaining the main defect components according to the center frequency and bandwidth of the sub-band where the maximum SK value located in.Finally, the kurtosis of the filtered defect signal was used as the characteristic parameter for quality grading of the yellow poplar logs.The sawing results of the sample logs show that for the predicted log quality grade results based on AR-SK, the high-grade boards occupancy is 77.2% in the high quality log group, but that is 21.8% in the low quality group.Compared with the log quality’s predicted grade results based on the traditional velocity, the high-grade boards occupancy is increased by more than 33% in the high quality log group, while that is decreased by about 26% in the low quality log group.The results show that the proposed method can effectively separate the defect signal components from the original signal and accurately classify these hardwood logs in quality.

关键词

阔叶材原木 / 质量分等 / 峭度 / 谱峭度 / 自回归模型

Key words

hardwood logs / quality assessment / kurtosis / spectral kurtosis(SK) / autoregressive mode

引用本文

导出引用
徐锋,瞿玉莹. 基于AR-SK的北美鹅掌楸原木声信号特征参数提取及质量分等[J]. 振动与冲击, 2020, 39(24): 99-106
XU Feng,QU Yuying. A feature extraction and quality grading method of acoustic signals generated from yellow poplar (liriodendron tulipifera) logs based on AR-SK[J]. Journal of Vibration and Shock, 2020, 39(24): 99-106

参考文献

[1] Carpenter RD, Sonderman DL, Rast ED, et al. Defects in hardwood timber [M]. U.S. Department of Agriculture, Forest Service, Washington, DC, 1989: 88.
[2] Huang CL, Lindstrom H, Nakada R, et al. Cell wall structure and wood properties determined by acoustics-A selective review [J]. Holz als Roh-und Werkstoff, 2003,61(5):321-335.
[3] Wiedenbeck J, Wiemann M, Alderman D, et al. Defining hardwood veneer log quality attributes [R]. Gen. Tech. Rep. NE-313. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 2003, 36.
[4] 刘昊, 高建民. 含水率和密度对木材应力波传播速度的影响[J]. 北京林业大学学报, 2014(6):154-158.
LIU Hao, GAO Jian-min. Effects of water content and density on stress wave propagation velocity of wood [J]. Journal of Beijing forestry university, 2014(6):154-158.
[5] Carter P, Briggs D, Ross RJ, et al. Acoustic testing to enhance western forest values and meet customer wood quality needs [R]. PNW-GTR­642. USDA Forest Service, Pacific Northwest Research Station, Portland, OR, 2005, 121-129.
[6 ] Wang X, Ross RJ, McClellan M, et al. Nondestructive evaluation of standing trees with a stress wave method[J]. Wood and Fiber Science, 2001, 33(4):522-533.
[7 ] Wang X, Ross RJ, Brashaw BK, et al. Diameter effect on stress-wave evaluation of modulus of elasticity of small-diameter logs [J]. Wood and Fiber Science, 2004, 36(3):368-377.
[8 ] Gaunt D. A revolution in structural timber grading [C]//Quenneville P. World Conference on Timber Engineering. Auckland, New Zealand: Curran Associates, Inc., 2012. 276-283.
[ 9] Murphy G, Cown D. Sand, stem and log segregation based on wood properties: a review [J]. Scandinavian Journal of Forest Research, 2015, 30(8):757-770.
[10 ] 徐华东, 王立海. 空洞对木材中应力波传播路径的影响[J]. 东北林业大学学报, 2014(4):82-84.
XU Hua-dong, WANG Li-hai. Effect of cavity on stress wave propagation path in wood [J]. Journal of northeast forestry university, 2014(4):82-84.
[11 ] 段新芳, 王平, 周冠武, 等. 应力波技术在古建筑木构件腐朽探测中的应用[J]. 木材工业, 2007, 21(2):10-12.
DUAN Xin-fang, WANG Ping, ZHOU Guan-wu, et al. Detection of decay and insect attacked ancient wood members with stress wave methods [J]. China wood industry, 2007, 21(2):10-12.
[ 12] Wang X, Stelzer H E, Wiedenbeck J, et al. Assessing wood quality of borer-infested red oak logs with a resonance acoustic technique [J]. Wood and Fiber Science, 2009, 41(2):180-193.
[13 ] Farrell R, Nolan G. Sorting plantation Eucalyptus nitens logs with acoustic wave velocity [R]. Project No.PN07.3018, Victoria, Australia: Forest & Wood Products Australia Limited, 2008.
[ 14] Xu F, Wang X, Thomas E, et al. Defect detection and quality assessment of hardwood logs: part 1-acoustic impact test and wavelet analysis [J]. Wood and Fiber Science, 2018, 50(3): 291-309.
[15 ] Kohei H, Masato N, Takanobu N, et al. Close/distant talker discrimination based on kurtosis of linear prediction residual signals[C]//2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), 2014: 2327-2331.
[ 16] Al-Bugharbee H, Trendafilova I. A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modeling [J]. Journal of Sound and Vibration, 2016,369:246-265.
[17 ] 曹展, 王细洋. 基于AR模型的齿轮故障诊断 [J]. 失效分析与预防, 2016, 11(5): 270-275.
CAO Zhan, WANG Xi-yang. Gear fault diagnosis based on AR model [J]. Failure analysis and prevention, 2016, 11(5): 270-275.
[18 ] 于德介, 程军圣, 杨宇. 基于EMD和AR模型的滚动轴承故障诊断方法[J]. 振动工程学报, 2004, 17(3):332-335.
YU De-jie, CHENG Jun-sheng, YANG Yu. Fault diagnosis method of rolling bearing based on EMD and AR model [J]. Journal of vibration engineering, 2004, 17(3):332-335.
[ 19] 从飞云, 陈进, 董广明. 基于谱峭度和AR模型的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4):538-541.
CONG Fei-yun, CHEN Jin, DONG Guang-ming. Fault diagnosis of rolling bearing based on spectral kurlness and AR model [J]. Vibration test and diagnosis, 2012, 32(4):538-541.
[20 ] Dwyer R. Detection of non-Gaussian signals by frequency domain Kurtosis estimation[C]// IEEE International Conference on Acoustics, Speech, & Signal Processing. 1983.
[21 ] 蔡艳平, 李艾华, 石林锁, 等. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击, 2011, 30(2):167-172.
CAI Yan-ping, LI Ai-hua, SHI Lin-suo, et al. Improved envelope spectrum analysis of rolling bearing fault detection based on EMD and spectrum kurtosity [J]. Vibration and impact, 2011, 30(2):167-172.
[22 ] 刘亭伟, 郭瑜, 李斌, 等. 基于谱峭度的滚动轴承故障包络阶比跟踪分析[J]. 振动与冲击, 2012, 31(17):149-153.
LIU Ting-wei, GUO Yu, LI Bin, et al. Fault envelope ratio tracking analysis of rolling bearing based on spectral kurdiness [J]. Vibration and impact, 2012, 31(17):149-153.
[23 ] 戴豪民, 许爱强, 李文峰, 等. 基于EMD的谱峭度方法在滚动轴承故障检测中的应用[J]. 计算机测量与控制, 2015, 23(3):696-698.
DAI Hao-min, XU Ai-qiang, LI Wen-feng, et al. Application of spectrum kurdness method based on EMD in fault detection of rolling bearing [J]. Computer measurement and control, 2015, 23(3):696-698.
[ 24] 赵妍, 李志民, 李天云. 一种基于谱峭度的异步电机故障诊断方法 [J]. 电工技术学报, 2014, 29(5):189-196.
ZHAO Yan, LI Zhi-min, LI Tian-yun. A method for fault diagnosis of induction motors based on spectral kurtosis [J]. Transactions of China Electrotechnical Society, 2014, 29(5):189-196.
[25 ] Wang W, Wong A K. A model-based gear diagnostic techniques [R], DSTO, TR-1079, Airframes and Engine Division, Aeronautical and Maritime Research Laboratory, 2000.
[26 ] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems & Signal Processing, 2006, 20(2):282-307.
[ 27] Francis A, Muruganantham C ,. An Adaptive Denoising Method using Empirical Wavelet Transform[J]. International Journal of Computer Applications, 2015, 117(21):18-20.
[28 ] National Hardwood Lumber Association. Rules for the measurement and inspection of hardwood and cypress [M]. Memphis, Tennessee, U.S.A. 2015:104.
[29 ] Mucciardi A N, Luley C J, Gormally K H. Preliminary evidence for using statistical classification of vibration waveforms as an initial decay detection tool [J]. Arboriculture & Urban Forestry, 2011, 37(5):191-199.

PDF(1738 KB)

Accesses

Citation

Detail

段落导航
相关文章

/