基于Newmark精细积分结合法的弹塑性结构地震碰撞反应分析

张瑞杰1,闫磊1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 247-253.

PDF(1083 KB)
PDF(1083 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 247-253.
论文

基于Newmark精细积分结合法的弹塑性结构地震碰撞反应分析

  • 张瑞杰1,闫磊1,2
作者信息 +

Seismic collision response analysis of elastic-plastic structures based on a Newmark precise integral method

  • ZHANG Ruijie1, YAN Lei1,2
Author information +
文章历史 +

摘要

传统精细积分法在实现方程降阶的同时,系统矩阵的维数增加一倍,而且非齐次项的解析解需要对系统矩阵求逆,这对于刚度矩阵时变的弹塑性结构地震反应分析,不仅大大增加了存储以及计算工作量,有时还会因逆矩阵不存在而求解失败。为改进上述缺点,推导了全量动力平衡方程和增量动力平衡方程的Newmark精细积分结合法;推导了非齐次项为线性变化和常量的级数解公式。针对弹塑性结构界点转换以及时变刚度问题,给出了全量迭代修正法和增量迭代修正法。上述几种方法结合使用,研制了弹塑性结构地震碰撞反应分析程序,并进行了算例验证。研究表明:Newmark精细积分结合法可以应用于弹塑性结构地震碰撞反应分析,结果精度对积分步长敏感。

Abstract

While the traditional precise integration method reduces the order of an equation, the dimension of the system matrix doubles, and the analytical solution of the non-homogeneous term needs to be inverted.This not only greatly increases the storage and calculation workload, but also sometimes fails to solve the time-varying elastic-plastic structural seismic response analysis because the inverse matrix does not exist.In order to improve the above shortcomings, a Newmark precise integration method of the total dynamic equilibrium equation and the incremental dynamic equilibrium equation was deduced, and the series solution formulas with linear variation and constant nonhomogeneous terms were deduced.Aiming at the boundary transformation and time-varying stiffness of elastic-plastic structures, the full iteration correction method and incremental iteration correction method were presented.Combining these methods, a program for seismic impact response analysis of elastic-plastic structures was developed and verified by an example.The results show that the Newmark precise integration method can be applied to the seismic impact collision analysis of elastic-plastic structures, and the accuracy of the results is sensitive to the integration step.

Key words

dynamic equilibrium equation / precise integration method / Newmark precise integration method / elastic-plastic / seismic collision

引用本文

导出引用
张瑞杰1,闫磊1,2. 基于Newmark精细积分结合法的弹塑性结构地震碰撞反应分析[J]. 振动与冲击, 2020, 39(24): 247-253
ZHANG Ruijie1, YAN Lei1,2. Seismic collision response analysis of elastic-plastic structures based on a Newmark precise integral method[J]. Journal of Vibration and Shock, 2020, 39(24): 247-253

参考文献

[1]钟万勰.结构动力平衡方程的精细时程积分法[J].大连理工大学学报,1994, 34 (2) : 131-136.
ZHONG Wanxie. One precise time integration method for structural dynamics[J]. Journal of Dalian
University of Technology ,1994,34 (2):131-136. (in Chinese)
[2]郭泽英.基于精细算法的短肢剪力墙结构弹塑性动力时程分析[D].西安建筑科技大学,2007.
[3]张瑞杰,李青宁,尹俊红.精细积分法应用于地震碰撞力反应谱计算研究.计算力学学报,2015,32(06):733-738.
ZHANG Ruijie, LI Qingning,YIN Jun-hong. Study of earthquake pounding force response spectrum computing using precise integration method [J]. Chinese Journal of Computational Mechanics, 2015,32(6):733-738. (in Chinese)
[4]张瑞杰,李青宁,尹俊红.地震碰撞分析中接触单元模型的精细积分解法.振动与冲击,2016,35(03):121-128.
ZHANG Ruijie, LI Qingning,YIN Junhong. Precise integration method for the solution of contact element model in earthquake pounding analysis [J]. Journal of Vibration and Shock,2016,35(3):121-128. (in Chinese)
[5]张瑞杰,李青宁,王天利,叶毅,孙建鹏.基于精细积分法的相邻结构弹塑性地震碰撞分析[J].振动与冲击,2018,37(14):59-66.
ZHANG Ruijie,Li Qingning,WANG Tianli etc. Elastic-plastic seismic collision analysis of adjacent structures based on precise integration method [J]. Journal of Vibration and Shock, 2018,37(14):59-66. (in Chinese)
[6]王元丰,储德文. 结构动力方程的精细与差分耦合时程积分法[J]. 固体力学学报,2003,24(4):469-474.
WANG Yuanfeng,CHU Dewen. A coupled precise and finite difference time integration method for structural dynamics [J]. Acta Mechanica Solida Sinica, 2003,24(4) :469-474. (in Chinese)
[7]顾元宪,陈飚松,张洪武.结构动力方程的增维精细积分法[J].力学学报,2000(04):447-456.
GU Yuanxian,CHEN Biaosong,ZHANG Hongwu. Precise time-integration with dimension expanding method [J]. Acta Mechanica sinic, 2000(04):447-456. (in Chinese)
[8]张素英,邓子辰.非线性动力方程的增维精细积分法[J].计算力学学报,2003,20(4):423-426.
ZHANG Suying, DENG Zichen. Increment-dimensional precise integration method for nonlinear dynamic equation [J]. Chinese Journal of Computational Mechanics,2003,20(4):423-426.(in Chinese)
[9]孙建鹏,李青宁.结构动力方程的离散精细积分格式[J].西安建筑科技大学学报(自然科学版),2010,42(01):42-46.
SUN Jianpeng, LI Qingning. Discrete precise time-integration method for structural dynamic analysis [J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2010,42(01):42-46. (in Chinese)
[10]张森文,曹开彬.计算结构动力响应的状态方程直接积分法[J].计算力学学报. 2000,17(1):94-97.
ZHANG Sen wen, CAO Kaibin. D irect integration of state equation method for dynamic response of structure. Chinese Journal of Computational Mechanics, 2000,17(1) :94-97. (in Chinese)
[11]蒲军平,刘岩,王元丰等.基于精细时程积分的结构动力响应降维分析[J].清华大学学报(自然科学版), 2002(12):1681-1683.
Pu Junping,LIU Yan,WANG Yuanfeng etc. Structural dynamic response analysis by reduced dimensions based on a precise time-integration method [J]. Journal of Tsinghua university(science and technology),  2002,42(12):1681-1683. (in Chinese)
[12]储德文,王元丰.精细直接积分法的积分方法选择[J].工程力学,2002,19(6):115-119.
CHU Dewen, WANG Yuanfeng. Integration formula selection for precise direct integration method [J]. Engineering Mechanics, 2002,19(6):115-119. (in Chinese)
[13]汪梦甫,周锡元.结构动力方程的高斯精细时程积分法[J].工程力学,2004,21(4):13-16.
WANG Mengfu, ZHOU Xiyuan. Gauss precise time-integration of structural dynamic analysis. Engineering Mechanics, 2004,21(4):13-16. (in Chinese)
[14]李金桥,于建华. 非线性动力方程避免状态矩阵求逆的级数解[J].四川大学学报(工程科学版),2004(04):26-30.
LI Jinqiao, YU Jianhua. Series Solution of Nonlinear Dynamics Equations Avoiding Calculating the Inversion of the State Matrix. Journal of Sichuan University (Engineering science edition), 2004, 36(4):26-30. (in Chinese)
[15]汪梦甫,区达光.精细积分方法的评估与改进[J].计算力学学报,2004(06):728-733.
WANG Mengfu,AU F T K. Assessment and improvement of precise time step integration method [J]. Chinese Journal of Computational Mechanics, 2004(06):728-733. (in Chinese)

PDF(1083 KB)

Accesses

Citation

Detail

段落导航
相关文章

/