斜拉索-MR阻尼器刚柔耦合动力学建模及仿真分析

周勇,刘小锋,陈跃华,冯志敏,张刚,胡海刚

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 264-270.

PDF(1436 KB)
PDF(1436 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 264-270.
论文

斜拉索-MR阻尼器刚柔耦合动力学建模及仿真分析

  • 周勇,刘小锋,陈跃华,冯志敏,张刚,胡海刚
作者信息 +

Dynamic modeling and simulation analysis of rigid flexible coupling of stay cable-MR damper

  • ZHOU Yong, LIU Xiaofeng, CHEN Yuehua, FENG Zhimin, ZHANG Gang, HU Haigang
Author information +
文章历史 +

摘要

为提高斜拉索-MR阻尼器动力学模型和减振控制精度,基于拉索大变形和柔性体假设,建立斜拉索-MR阻尼器刚柔耦合动力学模型,运用差分法与矩形积分法,提出刚度矩阵自适应的Newmark – β改进算法。搭建定刚度斜拉索-MR阻尼器系统的SIMULINK仿真模型,运用S-function建立变刚度模块,组合形成柔性体斜拉索-MR阻尼器耦合结构SIMULINK仿真模型,对改进算法进行分析验证,讨论在不同风雨载荷下,刚柔耦合作用对不同柔性拉索动力学响应及MR阻尼器控制效果的影响程度。实例测试表明,在一定的响应时间和瞬时风雨载荷激励下,仿真值与数值解的最大均方误差小于0.318%;柔性拉索与定刚度拉索的振动位移曲线平均峰值偏差为38.6%,响应时间偏差为15.6%,经阻尼器控制后分别减少了2.42倍和1.64倍。

Abstract

In order to improve the dynamic model and vibration control accuracy of a cable MR damper, a rigid flexible coupling dynamic model was established based on the assumption of large cable deformation and flexible body.By utilizing the difference method and the rectangular integral method, we proposed a stiffness matrix resilient Newmark-β method.By establishing Simulink simulation platform, we analyzed and verified the effectiveness of the proposed method.Specifically, the impact on the dynamic response and the control effect of MR damper of rigid flexible coupling of different flexible cables under varying wind and rain loads were discussed.The results show that under certain response time and instantaneous wind-rain load excitation, the maximum mean square error between simulation value and numerical solution is less than 0.318%.The average peak deviation of vibration displacement curve between flexible cable and fixed stiffness cable is 38.6%, and the response time deviation is 15.6%, which is reduced by 2.42 times and 1.64 times respectively after damper control.

关键词

柔性体 / 斜拉索 / MR阻尼器 / 刚柔耦合 / 力学建模 / 仿真分析

Key words

flexibility / stay cable / MR damper / rigid flexible coupling / mechanical modeling;simulation analysis

引用本文

导出引用
周勇,刘小锋,陈跃华,冯志敏,张刚,胡海刚. 斜拉索-MR阻尼器刚柔耦合动力学建模及仿真分析[J]. 振动与冲击, 2020, 39(24): 264-270
ZHOU Yong, LIU Xiaofeng, CHEN Yuehua, FENG Zhimin, ZHANG Gang, HU Haigang. Dynamic modeling and simulation analysis of rigid flexible coupling of stay cable-MR damper[J]. Journal of Vibration and Shock, 2020, 39(24): 264-270

参考文献

[1]汪志昊,寇琛,许艳伟,郜辉.自供电MR阻尼器复合减振系统对斜拉索振动控制试验研究[J].振动与冲击,2019,38(10):1-5+14.
WANG Zhi-hao, KOU Chen, Xu Yan-wei, GAO Hui. Experimental study on the cable vibration control using a self-powered MR damper hybrid system[J]. Journal of vibration and shock, 2019, 38(10):1-5+14.
[2]王慧萍,孙利民,胡晓伦.斜拉索-摩擦型阻尼器系统的阻尼特性分析[J].振动与冲击,2016,35(11):213-217.
WANG Hui-ping, SUN Li-min, HU Xiao-lun. Damping characteristics of a stayed cable-friction damper system[J]. Journal of vibration and shock, 2016,35(11):213-217.
[3]Johnson E A, Spencer B F Jr, Fujino Y. Semiactive damping of stay cables; a preliminary study, Proceedings of the 17th International Modal Analysis Conference (IMAC XVII), Society for Experimental Mechanics, Bethel, Connecticut, 1999, 417-423.
[4]Ko J M, Zheng G, Ni Y Q. Periodically forced vibration of nonlinear stay cables[J]. Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, Xi’an 2000.Bei-jing: Science Press, 1999, 437-443.
[5]石秀军. 基于阻尼器与斜拉索耦合作用的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
SHI Xiu-jun. Experimental researches based on the interaction between the damper and the stay cable[D]. Harbin: Harbin Institute of Technology, 2009.
[6]刘敏. 斜拉索-磁流变液阻尼控制体系及形状记忆合金耗能体系[D]. 哈尔滨: 哈尔滨工业大学, 2006.
LIU Min. Cable-magnetorheological fluid damping control system and shape memory alloy energy dissipation system[D]. Harbin: Harbin Institute of Technology, 2009.
[7]刘敏, 石秀军, 李惠, 欧进萍. 两端安装粘滞阻尼器的斜拉索控制体系动力特性研究. 第十三届全国结构风工程学术会议论文集, 大连, 2007:794-799.
LIU Min, SHI Xiu-jun, LI Hui, OU Jin-ping. Study on dynamic characteristics of cable control system with viscous dampers installed at both ends. Proceedings of the 13th National Academic Conference on structural wind engineering, Dalian, 2007:794-799.
[8]于志强, 李伟. 设置黏滞阻尼器的斜拉索风致振动控制研究[J]. 钢结构, 2014, 29(05):1-6.
YU Zhi-qiang, LI Wei. Research on wind-induced vibration control of inclined stay cables with resorting to viscous fluid dampers[J]. Steel construction, 2014, 29(05):1-6.
[9]彭俊钦, 童少伟, 姜金, 刘丁丁. 斜拉索-阻尼器耦合结构自振频率的影响因素分析[J].四川建筑, 2017, 37(05):132-134+137.
PENG Jun-qin, TONG Shao-wei, JIANG Jin, LIU Ding-ding. Analysis of influence factors on natural frequency of cable-damper coupling structure[J]. Sichuan architecture, 2017, 37(05):132-134+137.
[10]段玉贺, 张刚, 韩祥兰, 冯志敏, 陈跃华, 闫伟. 弹性边界与未知输入下斜拉索-磁流变阻尼器减振控制研究[J].工业建筑,2019,49(12):88-95+110.
DUAN Yu-he, ZHANG Gang, HAN Lan-xiang, FENG Zhi-min, CHEN Yue-hua, YAN Wei. Research on damping control of inclined cable-magnetorheological damper under the condition of elastic boundary and unknown input[J]. Industrial construction, 2019,49(12):88-95+110.
[11] Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance Control and Dynamics, 1987, 10(2):139~151.
[12]刘妤,徐梓翔,许洪斌,陈亚洁.基于刚柔耦合模型的微耕机振动特性分析[J].振动与冲击,2018,37(24):250-256.
LIU Yu, XU Zi-xiang, XU Hong-bin, CHEN Ya-jie. Vibration characteristics analysis of micro cultivator based on rigid flexible coupling model[J]. Journal of vibration and shock, 2018,37(24):250-256.
[13]程顺,沈振兴,崔涛,李慧剑.带轴向运动柔性梁附件航天器的刚-柔耦合动力学分析[J].振动与冲击,2018,37(02):91-101+107.
CHENG Shun, SHEN Zhen-xing, CUI Tao, LI Hui-jian. Rigid flexible coupling dynamics analysis of spacecraft with flexible beam appendages[J]. Journal of vibration and shock, 2018,37(02):91-101+107.
[14]朱保兵,李国强.不同边界条件下拉索振动的主动控制研究[J].力学季刊, 2009, 30(03):461-468.
ZHU Bao-bing, LI Guo-qiang. Research on active vibration control of cables under different boundary conditions[J]. Chinese quarterly of mechanics, 2009, 30(03):461-468.
[15]倪秋斌. 基于向量式有限元的斜拉索振动与控制研究[D].浙江大学,2013.
NI Qiu-bin. Research on vibration and control of stay cable based on vector finite element[D]. Zhejiang University,2013.
[16]邬喆华, 陈勇. 磁流变阻尼器对斜拉索的振动控制[M]. 科学出版社, 2007.
WU Zhe-hua, CHEN Yong. Vibration control of stay-cable using magnetorheological damper[M]. Science press, 2007.
[17]麻胜兰, 姜绍飞, 陈志刚. 基于IMPSCO和改进Newmark-β算法的结构系统及激励辨识研究[J].振动与冲击, 2017, 36(15):22-28.
MA Sheng-lan, JIANG Shao-fei, CHEN Zhi-gang. Research on structural system and excitation identification based on impsco and improved Newmark -   algorithm[J]. Journal of vibration and shock, 2017, 36(15):22-28.
[18]冯志敏, 张兴军, 张刚, 胡海刚. 斜拉索-阻尼器系统建模与减振控制研究[J]. 农业机械学报, 2013, 44(S1):282-287.
FENG Zhi-min, ZHANG Xing-jun, ZHANG Gang, HU Hai-gang. System modeling and vibration reduction control for stayed cable-Magnetorheological damper[J]. Transactions of the Chinese society of agricultural machinery, 2013, 44(S1):282-287.
[19]徐彦青, 郭彤. 半主动控制下超长斜拉索的面外风振响应[J]. 东南大学学报(自然科学版), 2018, 48(01):146-151.
XU Yan-qin, GUO Tong. Out of plane wind-induced response of super long stay cables under semi-active control[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(01):146-151.
[20]中交公路规划设计院. 公路桥梁抗风设计规范[M]. 北京: 人民交通出版社, 2018.
CCCC highway planning and Design Institute. Code for wind resistant design of Highway Bridges[M]. Beijing: People's Communications Press, 2018.
[21]段玉贺, 张刚, 韩祥兰, 陈跃华, 冯志敏. 斜拉索-磁流变阻尼器多性能约束下的减振控制算法[J].船舶工程, 2018, 40(07):52-57.
DUAN Yu-he, ZHANG Gang, HAN Lan-xiang, CHEN Yue-hua, FENG Zhi-min. Control algorithm of vibration reduction under multi performance constraints of stay cable and MR damper[J]. Ship engineering, 2018, 40(07):52-57.
[22]刘聪, 黄世成, 朱安祥, 江志红. 苏通长江公路大桥设计风速的计算与分析[J]. 应用气象学报, 2006(01):44-51.
LIU Cong, HUANG Shi-cheng, ZHU Zhi-hong. Calculation and analysis of design wind speed of Sutong Yangtze River Highway Bridge[J]. Journal of Applied Meteorology, 2006(01):44-51.
[23]《热带气旋等级》国家标准2006年6月15日实施[J].浙江气象, 2006(02):36.
The national standard of tropical cyclone classification was implemented on June 15, 2006 [J]. Zhejiang meteorology, 2006 (02): 36.

PDF(1436 KB)

956

Accesses

0

Citation

Detail

段落导航
相关文章

/