具有输入时滞的主动悬架鲁棒补偿控制

段建民,黄小龙,陈阳舟

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 254-263.

PDF(1513 KB)
PDF(1513 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 254-263.
论文

具有输入时滞的主动悬架鲁棒补偿控制

  • 段建民,黄小龙,陈阳舟
作者信息 +

Robust compensation control for active suspension subject to input delay

  • DUAN Jianmin,  HUANG Xiaolong, CHEN Yangzhou
Author information +
文章历史 +

摘要

针对一类具有输入时滞的主动悬架系统,提出了鲁棒补偿控制方法。首先,根据半车主动悬架动力学模型设计时延补偿向量用于构成控制输入,为此构造了相应的Lyapunov函数,解决鲁棒稳定性的问题。其次为了解决系统状态不完全可测的问题,采取变量替换法,实现有限可检测状态量的静态输出反馈控制。采用Lyapunov理论和线性矩阵不等式,设计多目标协同控制器,同时提高主动悬架系统的乘坐舒适性及操纵稳定性,并考虑悬架主动控制力、轮胎动载荷和执行器饱和等约束。最后, 通过在不同的时滞工况下对其进行动力学仿真分析,验证了该方法在不平路面扰动仍保持鲁棒稳定和满足一定的系统性能。

Abstract

Robust compensation control was proposed for a class of vehicle active suspension systems with input delay.First, according to the half vehicle active suspension dynamic model to design time delay compensation vector to constitute the control input, the corresponding Lyapunov function has been structured, to solve the problem of robust stability.In order to solve the problems of the system states that are not fully measurable, a variable substitution method was adopted, which can realize the static output feedback control with reduced dimensions.The Lyapunov theory and linear matrix inequality approaches were used to design the multi-objective cooperative controller, which can be simultaneous improvement in ride comfort and handling stability of the active suspension systems, and take into account constraints such as suspension active control force, tire dynamic deflection and actuator saturation.Finally, the dynamic simulation analysis of the active suspension system under different time-delay conditions verified that the system robust stability and certain performance achieved in the uneven road disturbance.

关键词

半车主动悬架系统 / 补偿控制 / 多目标协同控制 / 输入时滞 / 降维状态量

Key words

half vehicle active suspension systems / compensation control / multi-objective cooperative control / input delay / reduced dimensions

引用本文

导出引用
段建民,黄小龙,陈阳舟. 具有输入时滞的主动悬架鲁棒补偿控制[J]. 振动与冲击, 2020, 39(24): 254-263
DUAN Jianmin, HUANG Xiaolong, CHEN Yangzhou. Robust compensation control for active suspension subject to input delay[J]. Journal of Vibration and Shock, 2020, 39(24): 254-263

参考文献

[1] 郑晓园,张皓,王祝萍等.具有执行器容错的汽车主动悬架系统有限频率 控制[J].控制理论及应用, 2017,34(9): 1136-1142.
Zheng Xiao-yuan, Zhang Hao, Wang Zhu-ping, et al. Finite frequency H-infinity control for active vehicle suspension systems subject to actuator faults [J]. Control Theroy & Applications, 2017,34(9): 1136-1142.
[2] Wang R, Jing H, Yan F. Optimization and finite-frequency   control of active suspensions in in-wheel motor driven electric ground vehicles[J]. Journal of the Franklin Institute, 2015, 352(2):468-484.
[3]陈长征, 王刚, 于慎波. 含输入时滞的电动汽车悬架系统有限频域振动控制的研究[J]. 振动与冲击, 2016, 35(11): 130-137.
CHEN Chang-zheng, WANG Gang , YU Shen-bo. Finite frequency domain vibration control for suspension systems of electric vehicles with actuator input delay[J]. Journal of Vibration and Shock, 2016,35(11):130-137.
[4] Zhang H, Wang R, Wang J. Robust finite frequency   static-output-feedback control with application to vibration active control of structural systems [J]. Mechatronics, 2014, 24(4): 354–366.
[5] Zhao F, Ge S S, Tu F, et al. Adaptive neural network control for active suspension system with actuator saturation[J]. IET Control Theory & Applications , 2016, 10(14): 1696-1705.
[6] HUANG Y B, NA J, WU X, et al. Approximation-free control for vehicle active suspensions with hydraulic actuator [J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7258–7267.
[7] Li H Y, Yu J Y, Hilton C, et al. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach[J]. IEEE Trans. Ind. Electron., 2013, 60(8): 3328–3338.
[8] Yagiz N, Hacioglu Y, Taskin Y. Fuzzy sliding-mode control of active suspensions[J]. IEEE Trans. Ind. Electron., 2008, 55(11): 3883–3890.
[9] Sun W C, Gao H J, Yao B. Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators [J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2417-2422.
[10]段建民,黄小龙.汽车主动悬架多目标最优鲁棒控制LMI方法研究[J].自动化仪表,2019, 40(8): 43-47.
Duan Jian-min, Huang Xiao-long. Research on LMI method for multi-objective optimal robust control of vehicle active suspensions [J]. Process Automation Instrumentation, 2019,40(8): 43-47.
[11] Sun W C, Zhao Z, Gao H J. Saturated adaptive robust control for active suspension systems[J]. IEEE Trans. Ind. Electron., 2013, 60(9): 3889-3896.
[12] 范超雄. 车辆电液主动悬架控制研究[D]. 哈尔滨:东北林业大学, 2014.
FAN Chao-xiong. Research on control of vehicle electro- hydraulic active suspension[D]. Harbin: Northeast Forestry University, 2014.
[13]孔英秀,赵丁选,杨彬. 具有时滞的主动悬架非脆弱   静态输出反馈控制[J].农业机械学报, 2014,45( 8) : 1 -7.
KONG Ying-xiu, ZHAO Ding-xuan, YANG Bin. Non-fragile   static output feedback control of active suspension with actuator input delay [J]. Transactions of the Chinese Society of Agricultural Machinery,2014,45( 8) : 1 -7.
[14] 宿浩,唐功友.具有输入时滞的主动悬挂系统的减振控制[J]控制理论及应用, 2016,33(4): 552-558.
SU Hao, TANG Gong-you. Vibration control for active suspension systems with time-delay input [J]. Control Theory and Applications,2016,33(4): 552-558.
[15]董天夫,方明霞. 含有输入时滞的悬架系统的最优控制[J]. 噪声与振动控制,2017,37(4): 11-14.
DONG Tian-fu, FANG Min-xia. Optimal control of a suspension system with input time-delay [J]. Noise and Vibration Control, 2017,37(4): 11-14.
[16] Du H, Zhang N.  control of active vehicle suspensions with actuator time delay[J]. Journal of Sound and Vibration, 2007, 301(1-2):236–252.
[17] Li H, Jing X, Karimi H. Output-feedback-based  control for vehicle suspension systems with control delay [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 436 - 446.
[18] Afshar K K, Javadi A , Motlagh M R J. Robust  control of an active suspension system with actuator time delay by predictor feedback [J]. IET Control Theory & Applications, 2018, 12(7):1012–1023.
[19]方敏, 汪洪波, 陈无畏. 汽车主动悬架系统 控制器的降阶[J]. 控制理论与应用, 2007, 24(4):553-560.
FANG Min, WANG Hong-bo, CHEN Wu-wei. Order-reduction of H-infinity controller for the active suspension system of vehicle [J]. Control Theory & Applications, 2007, 24(4):553-560.
[20] Rubió-Massegúa J, Rossella J M, Karimi H R, et al. Static output-feedback control under information structure constraints [J]. Automatica, 2013, 49 (1) :313–316.
[21] 中国国家标准化管理委员会. 汽车平顺性试验方法:GB/T 4970-2009[S]. 北京:中国标准出版社,2009:2-3.
[22] HUANG Y B, NA J, WU X, et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance[J]. ISA Trans, 2015, 54: 145-155.
[23]杜峰, 葛晓成, 陈翔. 路面功率谱密度换算及不平度建模理论研究[J]. 振动.测试与诊断, 2015, 35(5):981-986.
DU Feng, GE Xiao-cheng, CHEN Xiang. Study on modeling theory for Power Spectral Density conversion of pavement and surface roughness[J]. Journal of Vibration, Measurement & Diagnosis Applications, 2015, 35(5): 981-986.
[24] Rath J J, Defoort M, Karimi H R, et al. Output feedback active suspension control with higher order terminal sliding mode[J]. IEEE Trans. Ind. Electron., 2017, 64(2):1392-1403.

PDF(1513 KB)

406

Accesses

0

Citation

Detail

段落导航
相关文章

/