考虑摩擦效应影响的全钢防屈曲支撑局部稳定设计方法

吴克川1,陶忠2,潘文2,白羽2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 113-121.

PDF(2767 KB)
PDF(2767 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 113-121.
论文

考虑摩擦效应影响的全钢防屈曲支撑局部稳定设计方法

  • 吴克川1,陶忠2,潘文2,白羽2
作者信息 +

A local buckling design method of all-steel buckling-restrained brace considering the effect of friction

  • WU Kechuan1,TAO Zhong2,PAN Wen2,BAI Yu2
Author information +
文章历史 +

摘要

整体稳定及局部稳定控制是保证防屈曲支撑滞回耗能能力的关键,由于全钢防屈曲支撑耗能部件与约束部件间摩擦效应的存在,更易发生局部失稳破坏。理论分析防屈曲支撑局部失稳破坏机理,推导约束部件的抗鼓曲承载力及考虑摩擦效应的最大局部挤压力计算式,建立考虑摩擦效应影响的全钢防屈曲支撑局部稳定设计准则。结果表明,局部挤压力呈端部大中间小的分布特点,抗鼓曲承载力随约束部件厚度及材料屈服强度的增加而增大,满足局部稳定设计准则的条件下,取更大的宽度比及更小的间隙值,可提高和保证防屈曲支撑的局部稳定性。

Abstract

Global stability as well as local stability control is the essential factor in the hysteresis behavior and energy-dissipation capacity of buckling-restrained braces.It is found that all-steel buckling-restrained braces are more prone to failure in local stability due to the friction effect between the energy-dissipation part and outer restraint segment.In this paper, theoretical study on the local stability failure mechanism was conducted for the derivation on the calculation methods of buckling capacity and the maximum compressive capability under friction effect.In addition, the design method considering the effect of friction on the local stability of all-steel bucking-restrained braces was established.The results demonstrate that the distribution of local compressive stress was the largest at both ends while decreased close to the middle, and the buckling capacity increased with the thickness and the yield strength of restraint segment.In general, a higher ratio of thickness to width or a smaller clearance between the core steel and restraint member is beneficial to the improvement of local stability of buckling-restrained braces in the condition of the satisfaction of proposed design principle.

关键词

全钢防屈曲支撑 / 局部失稳 / 摩擦效应 / 挤压力 / 塑性抗力

Key words

all-steel buckling-restrained brace / local buckling / friction effect / extrusion force / plastic resistance

引用本文

导出引用
吴克川1,陶忠2,潘文2,白羽2. 考虑摩擦效应影响的全钢防屈曲支撑局部稳定设计方法[J]. 振动与冲击, 2020, 39(24): 113-121
WU Kechuan1,TAO Zhong2,PAN Wen2,BAI Yu2. A local buckling design method of all-steel buckling-restrained brace considering the effect of friction[J]. Journal of Vibration and Shock, 2020, 39(24): 113-121

参考文献

[1]  郝晓燕,李宏男,牧野俊雄. 装有腹板式钢制防屈曲支撑框架结构振动台试验及分析[J]. 振动与冲击,2014,33(16):30-134.
HAO Xiao-yan,LI Hong-nan,TOSHIO Makino. Shaking table experiment and performance analysis of steel frame structure with innovate H type steel-unbuckling-braces[J]. Journal of vibration and shock,2014,33(16):30-134.
[2] 郭彦林,童精中,周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学,2016,33(9):1-12.
GUO Yan-lin,TONG Jing-zhong,ZHOU Peng. Research progress of buckling restrained braces:types,design methods and applications[J]. Engineering Mechanics,2016,33(9):1-12.
[3]  Watanabe A,Hitomi Y,Yaeki E,et al. Properties of brace encased in buckling-restraining concrete and steel tube [C]. Proceedings of the 9th World Conference on Earthquake Engineering. Tokyo-Kyoto Japan,1988. 
[4]  Zhao J,Wu B,Ou J. Effect of brace end rotation on the global buckling behavior of pin-connected buckling-restrained braces with end collars[J]. Engineering Structures,201240(7):240-253.
[5]  Iwata M,Murai M. Buckling-restrained brace using steel mortar planks: performance evaluation as a hysteretic damper [J]. Earthquake Engineering & Structural Dynamics,2006,35(14): 1807-1826.
[6]  赵俊贤,吴斌. 防屈曲支撑的工作机理及稳定性设计方法[J]. 地震工程与工程振动,2009,29(3):131-139. 
ZHAO Jun-xian,WU Bin. Working mechanism and stability design methods of buckling-restrained braces[J]. Journal of Earthquake Eneineering and Engineering Vibration,2009,29(3):131-139.  
[7]  Wu AC, Lin PC, Tsai KC.  High-mode buckling responses of buckling-restrained brace core plates[J]. Earthquake Engineering & Structural Dynamics,2014,43(3):375-393.
[8]  Takeuchi T,Matsui R,Hajjar J F,et al. Local Buckling restraint condition for core plate in buckling restrained braces [J]. Journal of Structural and Construction Engineering, 2008,73(4):2231-2238.
[9]  Dehghani M,Tremblay R . An analytical model for estimating restrainer design forces in bolted buckling-restrained braces[J]. Journal of Constructional Steel Research,2017,138(2):608-620.
[10] Genna F,Gelfi P . Analysis of the Lateral thrust in bolted steel buckling-restrained braces. II: engineering analytical estimates[J]. Journal of Structural Engineering,2012, 138(10):1244-1254.
[11] 马宁,吴斌,欧进萍. 全钢防屈曲支撑局部稳定性设计[J]. 工程力学,2013,30(1):134-139.
 MA Ning,WU Bin,OU Jin-ping. Local buckling design of all-steel buckling restrained brace[J].Engineering Mechanics,2013,30(1):134-139.
[12] 贾明明,吕大刚,陆斌斌. 玄武岩纤维包裹约束装配式防屈曲支撑性能试验研究[J]. 建筑结构学报,2015,36(S1):375-381.        
JIA Ming-ming,LV Da-gang,LU Bin-bin,et al. Experimental research on assembled buckling-restrained braceswrapped and constrained with basalt fiber[J]. Journal of Building Structures ,2015,36(S1):375-381.
[13] 蔡克铨,魏志毓,吴安杰,等. 脱层材料与槽接式挫屈束制支撑的性能研究[J]. 建筑钢结构进展,2012,14(5):10-19.
TSAI Kehchyuan,WEI Chihyu,Wu AC,et al. Experiment investigation of unbonding layers and welded end-alot connection for buckling restrained braces[J]. Progress in Steel Building structures,2012,14(5):10-19.
[14] 陈泉,李涛,王春林,等. 无黏结材料对全钢屈曲约束支撑受力性能影响的试验研究[J]. 建筑结构学报,2013,34(7):119-124.
 CHEN Quan,LI Tao,WANG Chun-lin,et al. Experimental research on effect of unbonding material on mechanical behavior of all-steel buckling-restrained brace[J]. Journal of Building Structures,2013,34(7):119-124.
[15] Lin P C,Tsai K C,Chang C A,et al. Seismic design and testing of buckling-restrained braces with a thin profile[J]. Earthquake Engineering & Structural Dynamics,2016,45(3):339-358.[16] Chun LP,Toru T,Ryota M,et al. Seismic design of buckling restrained Brace in preventing local buckling failure[J].Key Engineering Materials,2018,763:875-883.
[17] Genna F,Gelfi P . Analysis of the lateral thrust in bolted steel buckling-restrained braces. II: engineering analytical estimates[J]. Journal of Structural Engineering,2012,138(10):1244-1254.
[18] Dehghani M,Tremblay R . An analytical model for estimating restrainer design forces in bolted buckling-restrained braces[J]. Journal of Constructional Steel Research,2017, 138:608-620.
[19] Chen WF,Han DJ. Plasticity for structural engineers[M]. New York:Springer-Verlag,1988.
[20] Xu W,Pantelides C P . Strong-axis and weak-axis buckling and local bulging of buckling-restrained braces with prismatic core plates[J]. Engineering Structures,2017,153(1):279-289.
[21] 严红,潘鹏,王元清,等. 一字形全钢防屈曲支撑耗能性能试验研究[J]. 建筑结构学报,2012,33(11):142-149.
YAN Hong,PAN Peng,WANG Yuan-qing,et al. Experimental study of buckling-restrained braces with in-line steel core plate encased in double web wide flange steel outer unit [J]. Journal of Building Structures,2012,33(11):142-149.
[22] 郝晓燕,李宏男,杨昌民,等. 腹板式钢制防屈曲支撑力学性能试验研究[J]. 振动工程学报,2012,25(5): 497-505.
HAO Xiao-yan,LI Hong-nan,YANG Chang-min,et al. Experimental investigation on mechanical performances of an innovative H type steel-unbuckling-brace [J]. Journal of Vibration Engineering,2012,25(5): 497-505.
[23] 陈泉. 屈曲约束支撑滞回性能及框架抗震能力研究[D]. 南京:东南大学,2016.
CHEN Quan. Hysteretic properties of buckling-restrained braces and seismic performance of buckling restrained braced frames[D]. Nan Jing,Southeast University,2016.

PDF(2767 KB)

Accesses

Citation

Detail

段落导航
相关文章

/