基于混沌多项式的考虑子结构强度退化的混合试验研究

张睿1,陈城1,田利1,杨澄宇2,侯和涛1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 11-16.

PDF(1270 KB)
PDF(1270 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (24) : 11-16.
论文

基于混沌多项式的考虑子结构强度退化的混合试验研究

  • 张睿1,陈城1,田利1,杨澄宇2,侯和涛1
作者信息 +

Uncertainty based experimental design for hybrid simulation of structures with strength degradation using polynomial chaos expansion

  • ZHANG Rui1,CHEN Cheng1,TIAN Li1,YANG Chengyu2,HOU Hetao1
Author information +
文章历史 +

摘要

混合试验作为一种新兴的抗震试验方法,近年来逐渐引起广泛的关注。传统的混合试验通常对其数值子结构采取确定性的参数,因而无法考虑其参数不确定性对地震下整体结构响应的影响。如何考虑子结构参数的不确定性成为混合试验设计的一个主要研究问题。本文运用一种量化参数不确定性的混沌多项式展开方法,通过非线性Bouc-Wen模型模拟试验子结构在反复荷载下的强度退化,探讨了一个单自由度非线性结构考虑不同延性下最大位移响应,通过混沌多项式建立结构响应元模型并使用最小角回归计算模型系数。研究表明混沌多项式元模型可以帮助对试验子结构出现强度退化的混合试验进行参数不确定性分析,也为如何在混合试验设计中考虑子结构不确定性提出了新的思路。

Abstract

Hybrid simulation provides an efficient and effective experimental technique for seismic performance evaluation of structures under earthquakes.Conventional applications of hybrid simulation technique, however, often characterize the numerical substructures as deterministic thus unable to account for inherent uncertainties within civil engineering structures.In this study, a nonlinear single-degree-of-freedom structure with strength degradation was explored for experimental design of hybrid simulation to account for uncertainties in substructures.The polynomial chaos expansion (PCE) was utilized with Sobol sequence sampling to establish the meta-model to analyze the effect of parameter uncertainties on hybrid simulation of the SDOF structure close to collapse in terms of maximum displacement response.The leave-one-out (LOO) error analysis shows that the PCE meta-model enables good estimation of structural response statistics through hybrid simulation when the number of Sobol sequence samples reaches around 32.This study further demonstrates that the PCE has good potential for experimental design of hybrid simulation to account uncertainties.

关键词

混合试验 / 不确定性分析 / 混沌多项式展开 / 最小角回归 / Bouc-Wen模型 / 强度退化

Key words

hybrid simulation / uncertainty propagation / polynomial chaos expansion(PCE) / least angle regression / Bouc-Wen model / strength degradation

引用本文

导出引用
张睿1,陈城1,田利1,杨澄宇2,侯和涛1. 基于混沌多项式的考虑子结构强度退化的混合试验研究[J]. 振动与冲击, 2020, 39(24): 11-16
ZHANG Rui1,CHEN Cheng1,TIAN Li1,YANG Chengyu2,HOU Hetao1. Uncertainty based experimental design for hybrid simulation of structures with strength degradation using polynomial chaos expansion[J]. Journal of Vibration and Shock, 2020, 39(24): 11-16

参考文献

[1] 王倩颖.实时子结构试验方法及其应用[D].哈尔滨:哈尔滨工业大学, 2007.
   WANG Qianying. Real-time Substructure Test Method and its Application[D]. Harbin: Harbin Institute of Technology,2007.
[2] 王 涛,翟绪恒,孟丽岩,等.基于在线神经网络算法的混合试验方法[J].振动与冲击,2017,36(14):1-8.
WANG Tao,ZHAI Xuheng,Meng Liyan, et al. Hybrid testing method based on online neural network algorithm. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(14): 1-8.
[3] Chen C , Ricles J M , Karavasilis T L , et al. Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading[J]. Engineering Structures, 2012, 35(none):71-82.
[4] Nakashima M,Kato H,Takaoka E.Development of real‐time pseudo dynamic testing[J]. Earthquake Engineering & Structural Dynamics,2010,21(1):79-92.
[5] H.Iemura et al,Testing R/C specimen by a substructure based hybrid earthquake loading system,Proc.of 9th WCEE,Tokyo-Kyoto Japan,v01.4,August,1988,35-40
[6]K.Ohi,X.Lin and A. NidaSub-structuring pseudodynamic test on semi-rigiy jointed steel frames,Paper No.410,11tll WCEE.1996
[7] H.Mutsuyoshi et.Influence of member ductility on total seismic response of RC bridge piers using substructure lzeudodylqamic tests,Transactions of the Japan concrete institute,V01.15,353-360,1993
[8] Wang T , Cheng C , Guo X . Model-based predicting and correcting algorithms for substructure online hybrid tests[J]. Earthquake Engineering & Structural Dynamics, 2012, aop(aop):0-0.
[9] 陈永盛;吴斌;王贞,等.基于Simulink的混合试验系统及其验证[J].振动与冲击,2014, 33(7): 18-23.
   Chen Yongsheng; Wu Bin; Wang Zhen,et al. Simulation and Validation of Hybrid Testing System Based on Simulink. , 2014, 33(7): 18-23.
[10] Wang Z , Wu B , Xu G , et al. An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems[J]. Structural Control and Health Monitoring, 2017:e2076.
[11] Ceravolo, R., Asce, M., & Abbiati, G.. Time Domain Identification of Structures: Comparative Analysis of Output-Only Methods[J].Journal of Engineering Mechanics, 2013.
[12] Richard S. Sutton, Andrew Barto,et al.Reinforcement Learning[M]. The MIT Press,1998-03-01.
[13] Sobol I M . Sensitivity Estimates for Nonlinear Mathematical Models[J]. Mathematical Modeling & Computational Experiment, 1990, 1(1):112–118.
[14] Abbiati G. Uncertainty propagation and global sensitivity analysis in hybrid simulation using polynomial chaos expansion[C]// Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering. 2015
[15] 韩建平,杨军平.考虑结构构件退化特性评估大震下RC框架抗整体性倒塌能力[J]. 地震工程与工程振动, 2012, 32(6):53-64.
     HAN Jianping,YANG Junping,et al. InVestigation on global collapse resistant capacity of RC frame under severe earthquake considering deterioration characteristic of structural components[J].Earthquake Engineering and Engineering Vibration, 2012, 32(6):53-64.
[16] Goda K, Hong H P, Lee C S . Probabilistic Characteristics of Seismic Ductility Demand of SDOF Systems with Bouc-Wen Hysteretic Behavior[J]. Journal of Earthquake Engineering, 2009, 13(5):600-622.
[17] Blanning R W. The construction and implementation of metamodels[J]. Simulation Transactions of the Society for Modeling & Simulation International, 1975, 24(6): 177184..
[18] Chowdhury R , Rao B N , Prasad A M . High dimensional model representation for structural reliability analysis[J]. International Journal for Numerical Methods in Biomedical Engineering, 2009, 25(4):301-337.
[19] Bichon B J ,Eldred M S ,Swiler L P ,et al. Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions[J]. AIAA Journal, 2008, 46(10):2459-2468.
[20] Xiu D , Karniadakis G E . The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations[J]. SIAM Journal on Scientific Computing, 2002, 24.
[21] Efron B, Hastie T, Johnstone I, et al. Least Angle Regression[J]. Annals of Statistics, 2004, 32(2):407-451.
[22] Marelli S, Sudret B. UQLab: a framework for Uncertainty Quantification in MATLAB[J]. ETH-Zürich, 2015.

PDF(1270 KB)

1031

Accesses

0

Citation

Detail

段落导航
相关文章

/