直接拉伸循环荷载作用下混凝土滞回特性实验研究及定量分析

刘志恒1,陈徐东1,陈超2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 209-215.

PDF(1677 KB)
PDF(1677 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 209-215.
论文

直接拉伸循环荷载作用下混凝土滞回特性实验研究及定量分析

  • 刘志恒1,陈徐东1,陈超2
作者信息 +

Experiments study and quantitative analysis on hysteresis behavior of plain concrete under uniaxial cyclic tensile loading

  • LIU Zhiheng1, CHEN Xudong1, CHEN Chao2
Author information +
文章历史 +

摘要

由于直接拉伸试验较为困难,可靠的数据十分少有。采用液压闭环伺服材料试验机MTS322试验装置(MTS)对混凝土进行了高应力轴拉往复试验,试验采用正弦波进行加载。对混凝土应力和应变的相位差引起的滞回现象进行研究。加载时应变波和应力波的相位差与卸载时不同,加载与卸载的相位差导致了一个不对称的滞后回路。随着加载频率的增加,混凝土的耗散角减小,约为其切线模量的“X”形夹角的一半。

Abstract

As the direct tensile test is difficult, reliable data are very rare. In this paper, the high stress axial tension reciprocating test of concrete was carried out by using hydraulic closed-loop servo material testing machine MTS322, and sine wave was loaded in the test. The hysteretic phenomenon caused by the phase difference between stress and strain of concrete was studied. The phase difference between strain wave and stress wave during loading is different from that during unloading, and the phase difference between loading and unloading leads to an asymmetric hysteresis loop. With the increase of loading frequency, the dissipation angle of concrete decreases, which is about half of the “X” angle of its tangent modulus.



关键词

素混凝土 / 轴拉往复试验 / 滞回特性 / 相位差 / 耗散角

Key words

plain concrete / uniaxial cyclic tensile test / hysteresis characteristics / phase difference / dissipation angle

引用本文

导出引用
刘志恒1,陈徐东1,陈超2. 直接拉伸循环荷载作用下混凝土滞回特性实验研究及定量分析[J]. 振动与冲击, 2020, 39(7): 209-215
LIU Zhiheng1, CHEN Xudong1, CHEN Chao2. Experiments study and quantitative analysis on hysteresis behavior of plain concrete under uniaxial cyclic tensile loading[J]. Journal of Vibration and Shock, 2020, 39(7): 209-215

参考文献

[1] Elmalich D, Rabinovitch O. In-plane dynamic excitation of AAC masonry walls patched with FRP: dynamic testing and analysis[J]. Journal of Mechanics of Materials and Structures, 2013, 7(7):657-686.
[2] Hamed E. Nonlinear creep response of reinforced concrete beams[J]. Journal of Mechanics of Materials and Structures, 2012, 7(5):435-460.
[3] Roufailel M S L. Analytical modeling of hysteretic behavior of R/C frames[J]. Journal of Structural Engineering, 1987, 113(3):429-444.
[4] Bu J, Tian Z. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling[J]. Sādhanā, 2016, 41(3):1-8.
[5] Zhang J H, Wang J, Chai L S. Factors influencing hysteresis characteristics of concrete dam deformation[J]. Water Science and Engineering, 2017, 10(2):166-174.
[6] Payan C, Garnier V, Moysan J. Effect of water saturation and porosity on the nonlinear elastic response of concrete[J]. Cement and Concrete Research, 2010, 40(3):473-476.
[7] Sun D Y, Wen D, Shi X J. An endochronic model for anelasticity in rock[J]. Journal of Experimental Mechanics, 2004, 19(3):292-300.
[8] 宛新林, 聂细江, 席道瑛. 岩石对冲击波的非线性动态响应[J]. 实验力学, 2010, 25(3):346-352.
Wan X L, Nie X J, Xi D Y. On the nonlinear dynamic response of shock wave in Rock[J]. Journal of Experimental Mechanics, 2010, 25(3):346-352.
[9] 席军, 余勇, 席道瑛. 大理岩对多次冲击波的非线性动态响应[J]. 岩石力学与工程学报, 2011, 30:2850-2857.
Xi J, Yu Y, Xi D Y. Nonlinear dynamic response of marble to repeated shock wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30:2850-2857.
[10] 姜磊, 牛荻涛. 硫酸盐侵蚀与干湿循环下混凝土本构关系研究[J]. 中国矿业大学学报, 2017, 46(1):66-73.
Jiang L, Niu D T. Study of constitutive relation of concrete under sulfate attack and drying-wetting cycles[J]. Journal of China University of Mining and Technology, 2017, 46(1):66-73.
[11] Johnson P A, Zinszner B, Rasolofosaon P, et al. Dynamic measurements of the nonlinear elastic parameter α in rock under varying conditions[J]. Journal of Geophysical Research Solid Earth, 2004, 109(B2).
[12] Brennan B J, Stacey F D. Frequency dependence of elasticity of rock—test of seismic velocity dispersion[J]. Nature, 1977, 268(5617):220-222.
[13] Breccolotti M, Bonfigli M F, D’Alessandro A, et al. Constitutive modeling of plain concrete subjected to cyclic uniaxial compressive loading[J]. Construction and Building Materials, 2015, 94:172-180.
[14] Valanis K C, Fan J. A numerical algorithm for endochronic plasticity and comparison with experiment[J]. Computers and Structures, 1985, 19(5):717-724.
[15] Sinha B P. Stress-strain relations for concrete under cyclic loading[J]. ACI Structural Journal, 1964, 61(2):195-212.
[16] Yankelevsky D Z. Model for cyclic compressive behavior of concrete[J]. Journal of Structural Engineering, 1987, 113(2):228-240.
[17] 闫东明, 林皋, 王哲,等. 不同应变速率下混凝土直接拉伸试验研究[J]. 土木工程学报, 2005, 38(6):97-103.
Yan D M, Lin G, Wang Z,et al. A study on direct tensile properties of concrete at different strain rates[J]. China Civil Engineering Journal, 2005, 38(6):97-103.
[18] 滕骁, 卢玉斌, 陈兴,等. 再生混凝土动态直接拉伸的试验研究[J]. 振动与冲击, 2016, 35(9):43-51.
Teng X, Lu Y B, Chen X, et al. Tests for dynamic direct tensile of recycled aggregate concrete[J]. Journal of Vibration and Shock, 2016, 35(9):43-51.
[19] 张丽辉, 刘加平, 周华新,等. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响[J]. 材料导报, 2017, 31(23):109-114.
Zhang L, Liu J, Zhou H, et al. Effects of coarse aggregate and steel fiber on uniaxial tensile property of ultra-high performance concrete[J]. Materials Review, 2017, 31(23):10--114.
[20] 彭勃, 郑伟. 混凝土单轴直接拉伸强度试验方法的研究[J]. 湖南大学学报(自科版), 2004, 31(2):79-83.
Peng B, Zheng W. Study on the test method of concrete strength in uniaxial direct tension[J]. Journal of Hunan University, 2004, 31(2):79-83.
[21] Thun H, Ohlsson U, Elfgren L. A deformation criterion for fatigue of concrete in tension[J]. Structural Concrete, 2011, 12(3):187-197.
[22] Lv P.Y., Song Y.P., Li Q.B.. Fatigue tests and damage model of concrete under axial tension[J]. Journal of Hydraulic Engineering, 2002, 33(12): 79-84.
[23] Chen X, Bu J. Experimental study and modeling on direct tensile behavior of concrete under various loading regimes[J]. Aci Materials Journal, 2016, 113(4): 513-522.
[24] Chen X, Bu J, Xu L. Effect of strain rate on post-peak cyclic behavior of concrete in direct tension[J]. Construction & Building Materials, 2016, 124(16):746-754.
[25] Chen X.D., Xu L.Y., Bu J.W. Experimental study and constitutive model on complete stress-strain relations of plain concrete in uniaxial cyclic tension. KSCE Journal of Civil Engineering, 2016, 11(1): 1-7.
[26] 范向前, 胡少伟, 陆俊,等. 不同初始静载混凝土轴向拉伸试验研究[J]. 振动与冲击, 2017, 36(2):83-88.
Fan X Q, Hu S W, Lu J, et al. Effects of initial static loads on the tensile strength of concrete[J]. Journal of Vibration and Shock, 2017, 36(2):83-88.
[27] 陈亮, 任伟新, 张广锋,等. 基于性能的桥梁抗震设计中考虑持时的实际地震波优化选择方法[J]. 振动与冲击, 2015, (3):35-42.
Chen L, Ren W X, Zhang G F. An optimal method for selecting real earthquake ground motions considering duration for performance-based aseismic design of bridges[J]. Journal of Vibration and Shock, 2015, (3):35-42
[28] 胡海蛟, 彭刚, 谢玖杨,等. 混凝土循环加卸载动态损伤特性研究[J]. 工程力学, 2015, 32(6):141-145.
Hu H J, Peng G, Xie J Y, et al. Study on dynamic behaviour of concrete by cycle loading and unloading conditions[J]. Engineering Mechanics, 2015 32(6):141-145.
[29] ASTM C 33, Standard Specification for Concrete Aggregates, American Society for Testing and Materials, West Conshohocken, PA, 2004.

PDF(1677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/