葛阳1,2,郭兰中1,2,牛曙光1,2,窦岩1,2
振动与冲击. 2020, 39(7): 223-231.
针对旋转机械的剩余使用寿命预测问题,提出了一种基于t分布随机近邻嵌入(t-SNE)和长短期记忆网络(LSTM)的预测方法。将t-SNE降维方法引入旋转机械振动信号特征提取,实例验证表明无论针对时频域特征或小波包分解得到的能量特征,经t-SNE降维后特征区分度更加明显,利用降维后的特征进行故障模式识别,正确率接近100%;提出利用样本间散度作为旋转机械退化指标,实验表明样本间散度对旋转机械性能退化趋势的表现相比其他指标更加明显;以不同的训练样本量,利用LSTM方法进行剩余使用寿命预测,为了验证LSTM方法的有效性,将其与BP神经网络、灰色预测模型、支持向量机等方法进行比较,结果表明LSTM方法能够预测旋转机械退化趋势,显著提高剩余使用寿命的预测精度,对旋转机械的健康监测和寿命预测具有一定的理论指导意义。