为研究弹体头部形状对碳纤维层合板抗冲击性能的影响,利用一级气炮发射卵形头弹、半球形头弹和平头弹,对2 mm厚碳纤维层合板进行了冲击实验。利用公式拟合处理实验数据,揭示弹体头部形状对靶板弹道极限与能量吸收的影响,并且分析靶板冲击损伤形貌及机理特征。研究结果表明:平头弹弹道极限最高,半球形头弹次之,卵形头弹最低。弹体在低速度冲击时,弹体头部形状对靶板能量吸收率的影响更为显著。平头弹冲击时,靶板迎弹面受到均匀分布的环向剪切力,纤维同时被剪切,基体发生大面积剪切破坏。半球形头弹冲击时,靶板迎弹面受到非均匀分布的剪切力和挤压作用,纤维发生剪切断裂和拉伸断裂,基体发生剪切破坏和挤压破碎。卵形头弹冲击时,纤维发生单一的拉伸断裂,而基体则发生挤压破碎。弹体头部形状对靶板损伤的影响主要集中在迎弹面和中部纤维层。
Abstract
To investigate effects of projectile nose shape on anti-impact performance of carbon fiber reinforced plates (CFRPs),a one-stage gas gun was used to launch ogival-nosed projectiles, hemispherical-nosed ones and blunt-nosed ones on the target of a 2mm thick CFRP in impact tests. The test data were processed using the formula fitting method to reveal effects of projectile nose shape on the target plate’s ballistic limit and energy absorption, and analyze impact damage morphology and mechanism features of the target plate. The results showed that blunt-nosed projectiles’ ballistic limit is the highest, hemispherical-nosed ones’ is the second, and oval-nosed ones’ is the lowest; when projectiles impacting the target at low velocity, effects of projectile nose shape on target plate energy absorption rate are more significant; when blunt-nosed projectiles impacting target, target plate facing surface is subjected to uniformly distributed annular shear force, and fibers are cut at the same time, plate’s matrix has large area shear failure; when hemispherical-nosed projectiles impacting target, target plate facing surface is subjected to non-uniform distributed shear force and squeezing action, fibers have shear fracture and tensile fracture, and matrix has shear failure and attrition crushing; when ogival-nosed projectiles impacting target, fibers have single tensile fracture while matrix has attrition crushing; effects of projectile nose shape on target damage mainly focus on facing surface and middle fiber layers.
关键词
弹体 /
靶体 /
弹道极限 /
撞击 /
损伤模式
{{custom_keyword}} /
Key words
projectile /
target /
ballistic limit /
impact /
damage mode
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]ULVEN C, VAIDYA U K, HOSUR M V. Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels[J]. Composite Structures, 2003, 61(1): 143-150.
[2]谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究[J]. 爆炸与冲击, 2018, 38(3): 647-653.
XIE Wenbo, ZHANG Wei, JIANG Xiongwen. Obilque penetration on CFRPs by steel sphere[J]. Explosion and Shock Waves, 2018, 38(3): 647-653.
[3]贾宝华,王丹丹,李革,等. 圆锥头弹体冲击复合材料层合板数值模拟[J]. 复合材料学报, 2018, 35(6):1503-1509.
JIA Baohua, WANG Dandan, LI GE, et al. Numerical simulation of behavior for impact on composite laminated plates by conical projectiles[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1503-1509.
[4]XIE Wenbo, ZHANG Wei, KUANG Naihang, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere[J]. Composite Part B: Engineering, 2016(99): 483-493.
[5]秦建兵, 韩志军, 刘云雁, 等. 复合材料层合板侵彻行为的研究[J]. 振动与冲击,2013,32(24):122-126.
QIN Jianbing, HAN Zhijun, LIU Yunyan, et al. Penetration behavior of composite laminated plates[J]. Journal of Vibration and Shock, 2013, 32(24): 122-126.
[6]邓云飞, 袁家俊, 徐建新. 刚性卵形头弹撞击角度对编织复合材料层合板侵彻特性的研究[J]. 复合材料学报,2018,35(8):2039-2045.
DENG Yunfei, YUAN Jiajun, XU Jianxin. Influence of the impact angle of rigid ogival- nosed projectiles on the penetration characteristics of woven composite laminates[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2039-2045.
[7]邓云飞, 袁家俊, 徐建新. 半球形头弹不同角度冲击下编织复合材料板的侵彻特性[J]. 复合材料学报, 2018, 35(4): 843-849.
DENG Yunfei, YUAN Jiajun, XU Jianxin. Influence of the impact angle of rigid ogival-nosed projectiles on the penetration characteristics of woven composite laminates[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 843-849.
[8]PERNAS-SNCHEZ J, AERTERO-GUERRERO J A. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates[J]. Composites: Part A, 2014, 60(3): 24-31.
[9]SHIGEKI Y, KEIJI O, TSUKASA N, et al. Characterization of high-velocity impact damage in CFRP laminates:Part I-Experiment[J].Composites: Part A, 2013, 48(1): 93- 100.[10]JOHANN K, MANUEL P, BODE F. Influence of temperature and impact on low velocity impact damage severity in CFRP[J]. Composites Part A, 2018(115): 76-87.
[11]HUANG T, LIU Z C, WANG Y L. Experimental and numerical analysis of normal and lateral high-velocity impacts on carbon fiber-reinforced ploymer laminates[J]. Strength of Materials, 2016, 48(11): 183-192.
[12]LIU Lulu, ZHAO Zhenhua, CHEN Wei, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204: 645-657.
[13]XU Z, YANG F, GUAN Z W, et al. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates[J]. Composite Structures, 2016,154: 69-78.
[14]周喜辉, 铁瑛, 李成,等. 补片参数对胶接修理碳纤维层合板抗冲击损伤性能的影响[J]. 振动与冲击, 2019, 38(3):271-278.
ZHOU Xihui, TIE Ying, LI Cheng, et al. Effects of patch parameters on anti-impact damage performance of adhesive repaired carbon fiber laminates[J]. Journal of Vibration and Shock, 2019, 38(3): 271-278.
[15]周霞, 李凯, 陈成杭, 等. 纤维 /镁合金混杂层合板低速冲击响应及损伤模拟[J].振动与冲击, 2018, 37(22): 1-9.
ZHOU Xia, LI Kai, CHEN Chenghang, et al. Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates[J]. Journal of Vibration and Shock, 2018, 37(22): 1-9.
[16]彭刚, 王绪财, 刘原栋, 等. 复合材料层板的抗贯穿机理与模拟研究[J]. 爆炸与冲击, 2012, 32(4): 337-345.
PENG Gang, WANG Xucai, LIU Yuandong, et al. Research on anti-perforating mechanism and simulation of composite laminates[J]. Explosion and Shock Waves, 2012, 32(4): 337-345.
[17]梅志远,朱锡,张立军. FRC层合板抗高速冲击机理研究[J]. 复合材料学报,2006,23(2): 143-149.
MEI Zhiyuan, ZHU Xi, ZHANG Lijun. Ballistic protective mechanism of FRC laminates[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 143-149.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}