循环荷载作用下钢桥面铺装疲劳损伤失效行为研究

徐勋倩1,杨威1,黄卫2,季涛1,李雪雪1,储柳1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 59-66.

PDF(2094 KB)
PDF(2094 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 59-66.
论文

循环荷载作用下钢桥面铺装疲劳损伤失效行为研究

  • 徐勋倩1,杨威1,黄卫2,季涛1,李雪雪1,储柳1
作者信息 +

Fatigue damage failure behavior of steel bridge pavement under cyclic loading

  • XU Xunqian1,  YANG Wei1, HUANG Wei2,  JI Tao1,  LI Xuexue1,  CHU Liu1
Author information +
文章历史 +

摘要

针对钢桥面铺装工程中普遍采用的改性沥青(Stone Matrix Asphalt, SMA)、浇筑式沥青(Guss asphalt, GA)、环氧沥青
(Epoxy asphalt, EP)混合料双层铺装结构,进行了循环车载作用下钢桥面与沥青混凝土铺装疲劳损伤特性理论分析与试验研究。基于疲劳损伤度,研究了钢桥面铺装疲劳损伤失效行为和疲劳开裂过程中损伤场、应力和应变场动态演变机制,推导出疲劳失效时的损伤场、应力和应变场计算表达式,并给出钢桥面铺装疲劳寿命理论公式。以三座钢箱梁桥桥面铺装(润扬长江大桥2005,南京长江三桥2005,苏通大桥2008)为例,对不同铺装结构组合方案下的复合梁进行疲劳试验分析和使用寿命理论预测。实例研究结果表明,钢桥面铺装疲劳损伤失效行为预估模型合理可行;相较于改性沥青、浇筑式沥青,环氧沥青混合料具有较强高的强度低变形能力,更适合于大跨径钢桥面铺装抗疲劳的设计要求;由环氧沥青混合料组合而成的“双层环氧沥青混凝土”和“浇注式沥青混凝土(下层)+环氧沥青混凝土(上层)”的抗疲劳性能优于其它沥青混合料铺装结构组合方案,同等厚度组合情况下疲劳使用寿命可延长1倍~2倍以上;“双层环氧沥青混凝土” 已应用于润扬长江大桥、南京长江三桥和苏通长江大桥钢桥面工程,并已成功运行10年以上,其跟踪观测结果良好。

Abstract

Aiming at SMA, GA and EP mixtures double-layer pavement structure adopted commonly in steel bridge pavement engineering, theoretical analysis and tests were conducted for fatigue damage characteristics of steel bridge surface and asphalt concrete pavement under cyclic vehicle loads. Based on the fatigue damage degree, fatigue damage failure behavior of steel bridge pavement and dynamic evolution mechanism of damage field, stress and strain ones in fatigue cracking process were studied, and calculation expressions for damage, stress and strain fields during fatigue failure were deduced. The fatigue life theoretical formula for steel bridge pavement was derived. Steel box girder bridge pavements of Runyang Yangtze River Bridge 2005, Nanjing Yangtze River Third Bridge 2005 and Sutong Yangtze River Bridge 2008 were taken as examples, fatigue tests and predictions using the fatigue life theory were conducted for composite girders under different pavement structure combination schemes. The actual examples’ study results showed that the prediction model for steel bridge pavement fatigue damage failure behavior is reasonable and feasible; compared with SMA and GA, EP has higher intensity and stronger low-deformation ability, and it is more suitable to meet anti-fatigue design requirements of long-span steel bridge pavement; the anti-fatigue performances of double-layer EP and "upper layer EP +lower layer GA" are superior to those of other pavement structure schemes, and their fatigue life is 1-2 times longer than other’s with the same thickness; double-layer EP is applied in pavements of the three bridges mentioned above, these bridges’ pavements operate successfully for more than 10 years, and their follow-up observation results are good. 

关键词

钢桥面铺装 / 疲劳损伤 / 疲劳失效 / 疲劳试验 / 疲劳寿命预估方法

Key words

pavement on steel bridge / fatigue damage / fatigue failure / fatigue test / prediction method for fatigue life

引用本文

导出引用
徐勋倩1,杨威1,黄卫2,季涛1,李雪雪1,储柳1. 循环荷载作用下钢桥面铺装疲劳损伤失效行为研究[J]. 振动与冲击, 2020, 39(7): 59-66
XU Xunqian1, YANG Wei1, HUANG Wei2, JI Tao1, LI Xuexue1, CHU Liu1. Fatigue damage failure behavior of steel bridge pavement under cyclic loading[J]. Journal of Vibration and Shock, 2020, 39(7): 59-66

参考文献

 
  1. W. Huang. Integrated design procedure for epoxy asphalt concrete-based wearing surface on long-span orthotropic steel deck bridges [J]. Journal of Materials in Civil Engineering ,2016,28 (5): 04015189. DOI: 10. 1061/(asce)mt. 1943-5533.0001470
  2. K. Zhong, X. Yang, X. H. Wei. Investigation on surface characteristics of epoxy asphalt concrete pavement [J]. International Journal of Pavement Research and Technology, 2017,10: 545-552
  3. X. H. Zhou, Z. Hai, Y . H Tong, et al. The diseases analysis of steel bridge deck pavement of Epoxy Asphalt Concrete [J]. Highway Traffic Sci. Technol. 2010,26 (8):105-107
  4. 孙光辉,王志祥,杨耀. 多场耦合作用下钢桥面环氧沥青铺装病理分析[J]. 公路交通科技,2017,9(153):73-76
  5. G. H. Sun, Z. X. Wang, Y. Yang. Pathological analysis of epoxy asphalt pavement on steel deck under multi field coupling [J]. Highway transportation technology, 2017, 9(153):73-76
  6. Z. W. Wang, S. X. Zhang. Fatigue endurance limit of epoxy asphalt concrete pavement on the deck of long-span steel bridge [J]. International Journal of Pavement Research and Technology,2018,11: 408-415
  7. S. Luo, Z. D. Qian, X. Yang, et al. Design of guss asphalt mixtures based on performance of guss asphalt binders, mastics and mixtures[J]. Construction and Building Materials,2017,156:131-141
  8. T. Matsumoto, P. Suthiwarapirak, T. Kanda. Mechanisms of multiple cracking and fracture of DFRCCs under fatigue flexure [J]. Journal of Advanced Concrete Technology, Japan Concrete Institute, 2003, 1(3):299-306
  9. L. L. Chen, Z. D. Qian, J. Y. Wang. Multiscale numerical modeling of steel bridge deck pavements considering vehicle-pavement interaction [J]. International Journal of Geomechanics, 2016,16(1):B4015002. DOI 10.1061/(asce)gm. 1943-5622. 0000461
  10. Z. Q. Liu, W. Huang, Q. Q. Liu, Damage mechanics on the fatigue characteristics of asphalt mixture surfacing for steel bridge decks [J]. China Civil Eng. J. 39 (02) (2006) 117–121
  11. Y. Liu, Z. D. Qian, M. Zhang. Fatigue damage. Analysis of epoxy asphalt pavement for steel bridges considering coupled effects of heavy load and temperature variations [J]. Journal of Souteast University (English Edition),2017,33(4): 478-483. DOI: 10. 3969/j.issn. 1003 -7985.2017.04.014
  12. H. Ziari, R. Babagoli, A. Akbari, Investigation of fatigue and rutting performance of hot mix asphalt mixtures prepared by bentonite-modified bitumen [J]. Road Mater. Pavement Des. 16 (2014) 101–118
  13. L. Zhang, W. W. Wang, Q. Lu, et al. An innovative approach to determine deck pavement modulus and interfacial slip stiffness based on a composite beam model [J]. Construction and Building Materials,2013,40:411-418
  14. H. Benedetto, C. Roche, H. Baaj, A. Pronk, R. Lundstraim, Fatigue of bituminous mixtures [J]. Mater. Struct. 37 (2004) 202–216
  15. Y. L. Zhao, J. P. Zhang. A mechanical model for three-phase permanent deformation of asphalt mixture under repeated load [J]. Wuhan Univ. Technol. (Mater. Sci. Ed.) ,2009,24 (6):1001-1003
  16. J. Sousa, J. Pais, M. Prates, R. Barros, P. Langlois, A.-M. Leclerc, Effect of aggregate gradation on fatigue life of asphalt concrete mixes [J]. Transp. Res. Rec.1630 (1998) 62–68
  17. J.T. Harvey, J.A. Deacon, B. Tsai, C.L. Monismith, Fatigue Performance of Asphalt Concrete Mixes and Its Relationship to Asphalt Concrete Pavement Performance in California [R]. Report prepared for California Department of Transportation, 1995
  18. S. Adhikari, S. Shen, Z. You, Evaluation of Fatigue Models of Hot-Mix Asphalt through Laboratory Testing [J]. Transp. Res. Rec. J. Transp. Res. Board 2127 (2010)36–42
  19. D. Bodin, C. de La Roche, A. Chabot, Prediction of Bituminous Mixes Fatigue Behavior during Laboratory Fatigue Tests [C]. 3rd Eurasphalt Eurobitume Congr., Vienna, 2004, pp. 1935–1945
  20. A. Molenaar, Prediction of fatigue cracking in asphalt pavements: do we follow the right approach? [J]. Transp Res. Rec. 2001 (2007) 155–162
  21. Z. Suo, W.G. Wong, Analysis of fatigue crack growth behavior in asphalt concrete material in wearing course [J]. Constr. Build. Mater. 23 (2009) 462–468
  22. P. J. Yoo, I. L. Al-Qadi, A strain-controlled hot-mix asphalt fatigue model considering low and high cycles [J]. Int. J. Pavement Eng. 11 (2010) 565–574
  23. S.R. Tangella, J. Craus, J.A. Deacon, C.L. Monismith, Summary report on fatigue response of asphalt mixtures SHRP Report No. TM-UCB-A-003-A [R]. University of California, 1990
  24. Z. D. Qian,, J. Y. Wang, L. L .Chen, et al. Three-dimensional discrete element modeling of crack development in epoxy asphalt concrete [J]. Journal of Testing and Evaluation, 2015,43 (2) : ^ 1 3 . DOI :10. 1520/jte20140086
  25. C.L. Monismith, J.A. Deacon, Fatigue of asphalt paving mixtures [J]. ASCE Transp. Eng. J. 95 (1969) 317–346.
  26. S. Shen, S. H. Carpenter, Dissipated Energy Concepts for HMA Performance. Fatigue and Healing Technical Report [R]. COE Report No. 29, University of Illinois at Urbana-Champaign, 2007
  27. M.A. Miner, Cumulative damage in fatigue [J]. J. Appl. Mech. 12 (1945) A159–A164
  28. N. Saboo, P. Kumar, Optimum blending requirements for EVA modified binder [J]. Int. J. Pavement Res. Technol. 8 (2015) 172–178
  29. 黄卫,林广平,钱振东,刘振清. 正交异性钢桥面铺装层疲劳寿命的断裂力学分析[J]. 土木工程学报,2006.9,39(9):112-116
  30. W. Huang, G. P, Lin, Z. D. Qian, Z. Q. Liu. Fracture-mechanics analysis of the fatigue life of the pavement on orthotropic steel bridge decks [J]. China Civil Eng. J, 2006.9,39(9):112-116
  31. P. Suthiwarapirak, T. Matsumoto, T. Kanda. Flexural fatigue failure characteristics of an engineered cementitious composite and polymer cement mortars [J]. JSCE, Journal of Materials, Concrete Structures and Pavements, 2002, 718(57):121-134
  32. W. Liu, S. L. Xu, Q. H. Li. Experimental study on fracture performance of ultra-high toughness cementitious composites with J-integral [J]. Engineering Fracture Mechanics, 2012, 96(10): 656-666
  33. R. Delgadillo, H.U. Bahia, R. Lakes, A nonlinear constitutive relationship for asphalt binders [J]. Mater. Struct. 45 (2012) 457–473
  34. 中华人民共和国交通部. JTJ 052-2011公路工程沥青及沥青混合料试验规程[S]. 北京: 人民交通出版社, 2011
    China ministry of transport. standard test material of bitumen and bituminous mixtures for highway engineering JTJ 052-2011 [S]. CN-JT: Beijing, China, 2011: 373-374.

PDF(2094 KB)

335

Accesses

0

Citation

Detail

段落导航
相关文章

/