基于结构响应极值前四阶矩的桥墩抗震可靠度

张龙文1,卢朝辉2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 36-42.

PDF(1041 KB)
PDF(1041 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 36-42.
论文

基于结构响应极值前四阶矩的桥墩抗震可靠度

  • 张龙文1,卢朝辉2
作者信息 +

Aseismic reliability of bridge piers based on first four moments of extreme structural responses

  • ZHANG Longwen1, LU Zhaohui2
Author information +
文章历史 +

摘要

为研究桥墩非线性地震响应下的抗震可靠度,引入随机函数-谱表示模型与高阶矩法,提出了基于结构响应极值前四阶矩的桥墩抗震可靠度分析方法。考虑三线型恢复力模型,建立了桥墩的单墩模型;利用随机函数-谱表示模型生成非平稳地震加速度时程样本并对桥墩进行非线性时程分析,在此基础上,建立了结构响应极值前四阶矩(均值,标准差,偏度和峰度)的计算框架;最后,考虑桥墩位移界限,给出了桥墩位移的功能函数,进而利用高阶矩法计算桥墩抗震可靠指标。通过对桥墩结构分析,验证了该方法的高效性与精确性;计算结果表明:与Monte Carlo模拟结果相比,该方法计算的前四阶矩、抗震可靠指标(失效概率)的最大相对误差分别为0.28%,1.92% (4.92%),该方法为桥墩抗震可靠度评估提供了一种有效的途径。

Abstract

In order to study aseismic reliability of bridge piers under their non-linear seismic responses, the random function-spectrum representation model and high-order moment method were introduced to propose a bridge pier’s aseismic reliability analysis approach based on first four moments of extreme structural responses. Firstly, a three-line restoring force model was considered to establish a single column model of bridge pier. Secondly, the random function-spectrum representation model was used to generate non-stationary seismic acceleration time-history samples, and non-linear time history analysis was conducted for the bridge pier’s structural responses. Then, the calculation framework for first four moments including mean, standard deviation, skewness and kurtosis of extreme structural responses was established. Finally, the pier displacement limit was considered to deduce the pier displacement’s performance function, and the high-order moment method was used to calculate the bridge pier’s aseismic reliability index. Through the bridge pier’s structural analysis, the effectiveness and precision of the proposed method were verified. The results showed that compared with the simulation results using Monte Carlo method, the maximum relative errors of first four moments, aseismic reliability index and failure probability calculated using the proposed method are 0.28%, 1.92% and 4.92%, respectively; the proposed method provides an effective way for evaluating aseismic reliability of bridge piers.

关键词

抗震可靠度 / 极值 / 前四阶矩 / 桥墩 / 随机函数-谱表示

Key words

aseismic reliability / extreme value / first four moments / bridge piers / random function-spectral representation

引用本文

导出引用
张龙文1,卢朝辉2. 基于结构响应极值前四阶矩的桥墩抗震可靠度[J]. 振动与冲击, 2020, 39(7): 36-42
ZHANG Longwen1, LU Zhaohui2. Aseismic reliability of bridge piers based on first four moments of extreme structural responses[J]. Journal of Vibration and Shock, 2020, 39(7): 36-42

参考文献

[1] 陈惠发, 段炼. 桥梁工程抗震设计[M]. 蔡中民,等译.北京:机械工业出版社, 2008.
[2] 孙树礼.高速铁路桥梁设计与实践[M].北京:中国铁道出版社, 2011.
[3] DOUGLAS J, AOCHI H. A survey of techniques for predicting earthquake ground motions for engineering purpose [J]. Surveys in Geophysics, 2008, 29(3): 187-220.
[4] SHINOZUKA M. Simulation of multivariate and multidimensional random processes [J]. Journal of the Acoustical Society of America, 1971, 49(1):357-368.
[5] SHINOZUKA M, Jan C M. Digital simulation of random processes and its applications [J]. Journal of Sound and Vibration, 1972, 25(1): 111-128.
[6] 陈建兵, 李杰. 随机过程的随机谐和函数表达[J]. 力学学报, 2011, 43(3): 505-513.
CHEN Jianbing, LI Jie. Stochastic harmonic function and spectral representations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 505-513.
[7] 陈建兵, 李杰. 谱表达方法的频率取点优选[J]. 振动工程学报, 2011, 24(1): 89-95.
CHEN Jianbing, LI Jie. Optimal selection of frequencies in the spectral representation method [J]. Journal of Vibration Engineering, 2011, 24(1): 89-95.
[8] 刘章军, 方兴. 平稳地震动过程的随机函数-谱表示模拟[J]. 振动与冲击, 2013, 32(24): 6-10.
LIU Zhangjun, FANG Xing. Simulation of stationary ground motion with random functions and spectral representation. Journal of Vibration and Shock, 2013, 32(24): 6-10.
[9] 刘章军, 曾波, 吴林强. 非平稳地震动过程模拟的谱表示-随机函数法[J]. 振动工程学报, 2015, 28(3): 412-417.
LIU Zhangjun, Zeng Bo, WU Linqiang. Simulation of non-stationary ground motion by spectral representation and random functions [J]. Journal of Vibration Engineering, 2015, 28(3): 412-417.
[10] LIU Z, LIU Z, CHEN D. Probability density evolution of a nonlinear concrete gravity dam subjected to nonstationary seismic ground motion [J]. Journal of Engineering Mechanics, 2018, 144(1): 04017157(1-13).
[11] 楚志坚. 钢筋混凝土矩形桥墩延性抗震计算研究[D]. 北京: 北京交通大学, 2010.
[12] GB 50111-2006 (2009年版). 铁路工程抗震设计规范[S]. 北京: 中国计划出版社, 2009.
[13] 陈令坤, 蒋丽忠, 余志武, . 高速铁路简支梁桥地震反应特性研究[J]. 振动与冲击, 2011, 30(12): 216-222.
CHEN Lingkun, JIANG Lizhong, YU Zhiwu, et al. Seismic response characteristics of a high-speed railway-supported girder bridge [J]. Journal of Vibration and Shock, 2011, 30(12): 216-222.
[14] 纪厚强. 钢筋混凝土桥墩抗震性能研究[D]. 西安: 长安大学, 2010.
[15] LUTES L D, SARKANI S. Random Vibration: analysis of structural and mechanical systems [M]. Butterworth-Heinemann, 2004.
[16] GRIGORIU M, SAMORODNITSKY G. Reliability of dynamic systems in random environment by extreme value theory [J]. Probabilistic Engineering Mechanics, 2014, 38: 54-69.
[17] XU J, DING Z, WANG J. Extreme value distribution and small failure probabilities estimation of structures subjected to non-stationary stochastic seismic excitations [J]. Structural Safety, 2018, 70: 93-103.
[18] HE J, GONG J. Estimate of small first passage probabilities of nonlinear random vibration systems by using tail approximation of extreme distributions [J]. Structural Safety, 2016, 60: 28-36.
[19] XU J. A new method for reliability assessment of structural dynamic systems with random parameters [J]. Structural Safety, 2016, 60: 130-143.
[20] ZHAO Y G, ONO T. Moment methods for structural reliability [J]. Structural Safety, 2001, 23:47-75.
[21] ZHAO Y G, LU Z H. Fourth-moment standardization for structural reliability assessment [J]. Journal of Structural Engineering, 2007, 133(7): 916-924.
[22] LU Z H, HU D Z, ZHAO Y G. Second order fourth moment method for structural reliability [J]. Journal of Engineering Mechanics, 2017, 143(4): 06016010(1-5).
[23] 徐赵东, 郭迎春. Matlab 语言在建筑抗震工程中的应用[M]. 北京:科学出版社, 2004.
[24] LIU Z, LIU W, PENG Y. Random function based spectral representation of stationary and non-stationary stochastic processes [J]. Probabilistic Engineering Mechanics, 2016, 45: 115-126.
[25] 华罗庚, 王元. 数论在近似分析中的应用[M]. 北京: 科学出版社, 1978.
[26] ZHAO Y G, ZHANG X Y, LU Z H. Complete monotonic expression of the fourth-moment normal transformation for structural reliability [J]. Computers & Structures, 2018, 196: 186-199.
[27] CLOUGH R W, PENZIEN J. Dynamic of structures [M]. Second edition (Revised), Computers & Structures, Inc., 2003.
[28] SEYA H, TALBOTT H, HWANG H. Probabilistic seismic analysis of a steel frame structure [J]. Probabilistic Engineering Mechanics, 1993, 8: 127-136.
[29] 刘章军, 刘增辉, 刘威. 全非平稳地震动过程的概率模型及反应谱拟合[J]. 振动与冲击, 2017, 36(2): 32-38.
LIU Zhangjun, LIU Zenghui, LIU Wei. Probability model of fully non-stationary ground motion with the target response spectrum compatible [J]. Journal of Vibration and Shock, 2017, 36(2): 32-38.
[30] DEODATIS G, SHINOZUKA M. Simulation of seismic ground motion using stochastic waves [J]. Journal of Engineering Mechanics, 1989, 115(12): 2723-2736.
[31] KONG F, LI S, ZHOU W. Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators [J]. Mechanical Systems and Signal Processing, 2014, 48(1-2): 300-324.
 

PDF(1041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/