基于排列熵理论的非线性系统特征提取研究

武薇,申永军,杨绍普

振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 67-73.

PDF(1629 KB)
PDF(1629 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (7) : 67-73.
论文

基于排列熵理论的非线性系统特征提取研究

  • 武薇,申永军,杨绍普
作者信息 +

Feature extraction for nonlinear systems based on permutation entropy theory

  • WU Wei,  SHEN Yongjun,  YANG Shaopu
Author information +
文章历史 +

摘要

提出一种基于排列熵及其改进理论的伪相平面法,从而可以提取非线性系统中的微弱周期信号特征。通过选择合理的时间延迟和嵌入维数,对Duffing系统的响应信号进行相空间重构,得到一次排列熵和二次排列熵。随后将位移激励、一次排列熵和二次排列熵作为数据集,组成位移激励-一次排列熵和位移激励-二次排列熵两种伪相平面。通过将这两种方法与传统的相平面法、频谱分析和排列熵、排列熵谱、二次排列熵、二次排列熵谱的提取效果进行对比,验证了该方法的合理性。研究表明该方法能够对非线性系统中的微弱周期信号特征进行提取,取得了较好效果。

Abstract

A pseudo phase plane method based on permutation entropy and its improved theory was proposed to extract weak periodic signal’s features in a nonlinear system. Through choosing a reasonable time delay and embedding dimension, the phase space of a Duffing system’s response signal was reconstructed to obtain primary permutation entropy and quadratic one. Then, displacement excitation, primary permutation entropy and quadratic one were taken as data sets to form two pseudo phase planes of displacement excitation-primary permutation entropy and displacement excitation-quadratic one. The proposed method’s extracting effect was compared with those of traditional methods including phase plane method, spectral analysis, permutation entropy, permutation entropy spectrum, quadratic permutation entropy and quadratic permutation entropy spectrum to verify the rationality of the proposed method. The study showed that the proposed method can extract characteristics of weak periodic signal in nonlinear systems, and achieve better effect.

关键词

排列熵 / 伪相平面 / Duffing系统 / 特征提取

Key words

permutation entropy / pseudo phase plane / Duffing system / feature extraction

引用本文

导出引用
武薇,申永军,杨绍普. 基于排列熵理论的非线性系统特征提取研究[J]. 振动与冲击, 2020, 39(7): 67-73
WU Wei, SHEN Yongjun, YANG Shaopu. Feature extraction for nonlinear systems based on permutation entropy theory[J]. Journal of Vibration and Shock, 2020, 39(7): 67-73

参考文献

[1]BRANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Phys Rev Lett, 2002, 17(88):21-24. 
[2]LIU Y, YAN R, GAO R X. A nonlinear time series analysis method for health monitoring of rolling bearings[C]//ASME 2010 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2010.
[3]NAIR U, KRISHNA B M, NAMBOOTHIRI V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1/2/3/4): 61-68.
[4]LIU Y D, CHON T S, BAEK H, et al. Permutation entropy applied to movement behaviors of drosophila melanogaster[J]. Modern Physics Letters B Ltd, 2011, 25(12):1133-1175.
[5]李国华, 张永忠. 机械故障诊断[M]. 北京: 化学工业出版社, 1999.
[6]何正嘉. 张西宁. 现代信号处理及工程应用[M]. 西安: 西安交通大学出版社, 2007.
[7]刘永斌,龙潜,冯志华,等.一种非平稳、非线性振动信号检测方法的研究[J].振动与冲击, 2007,26(12): 131-134.
LIU Yongbin, LONG Qian, FENG Zhihua, et al. Detection method for nolinear and non-stationary signals[J]. Journal of Vibration and Shock, 2007,26(12): 131-134.
[8]段春宇.滚动轴承故障特征提取与诊断研究[D].石家庄:石家庄铁道大学, 2015.
[9]SHEN Yongjun, WANG Junfeng, YANG Shaopu.  Improved method for detecting weak abrupt information based on permutation entropy[J]. Advances in Mechanical Engineering, 2017, 9(1): 1-9.
[10]郑小霞,周国旺,任浩翰,等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击,2017,36(22):22-28.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock, 2017,36(22):22-28.
[11]张建伟,马晓君,侯鸽,等.基于排列熵的泵站压力管道运行状态监测[J].振动.测试与诊断,2018,38(1):148-154.
ZHANG Jianwei, MA Xiaojun, HOU Ge, et al. Monitoring operating condition of pipeline of pumping station based on permutation entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2018,38(1):148-154.
[12]张建伟,侯鸽,赵瑜,等.排列熵算法在水工结构损伤诊断中的应用[J].振动.测试与诊断,2018,38(2):234-239.
ZHANG Jianwei, HOU Ge, ZHAO Yu, et al. Damage Diagnoisis of hydraulic structure based on permutation entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2018,38(2):234-239.
[13]姜源,申永军,温少芳,等.分数阶达芬振子的超谐与亚谐联合共振[J].力学学报,2017,49(5):1008-1019.
JIANG Yuan, SHEN Yongjun, WEN Shaofang, et al. Super-harmonic and sub- harmonic simultaneous resonances of fractional-order duffing oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(5):1008-1019.
[14]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
[15]HANDLEY J W, JAENISCH H M, BJORK C A, et al. Chaos and fractal algorithms applied to signal processing and analysis[J]. Simulation, 1993, 60(1): 36-53.
[16]LIMA M F M, MACHADO J A T. Representation of robotic fractional dynamics in the pseudo phase plane[J]. Acta Mechanica Sinica, 2011, 27(1): 28-35.

PDF(1629 KB)

Accesses

Citation

Detail

段落导航
相关文章

/