为提高液浮陀螺仪静态误差模型系数中二次项系数的标定精度,提出了线振动台振动整周期的方法来标定液浮陀螺仪。在充分考虑线振动台的寄生转动和垂直度误差,测试时产生的角振动以及陀螺仪的安装误差的基础上,设计了六位置法来标定陀螺仪二次项系数的标定方案。该方法抑制了线振动台的寄生转动、测试时产生的微小角振动以及陀螺仪的安装误差对标定精度的影响,能够提高液浮陀螺仪在线振动台上测试的精度。最后进行了相应的误差分析,验证了该方法能够准确的标定出陀螺仪的二次项误差模型系数,标定精度可达10-4(°/h/g2)数量级。
Abstract
In order to improve the calibration accuracy of the second-order coefficient in the static error model coefficient of the floated gyroscope, the whole vibration period method of the linear shaking table was proposed to calibrate the floated gyroscope. On the basis of fully considering the parasitic rotation and verticality error of the linear shaking table, the angular vibration produced during the test and the installation error of the gyroscope, a calibration scheme of the six-position method was designed to calibrate the second-order coefficient of the gyroscope. This method suppresses the influence of the parasitic rotation of the linear shaking table, the small angular vibration produced during the test and the installation error of the gyroscope on the calibration accuracy, and can improve the measurement accuracy of the floated gyroscope on the on-line shaking table. Finally, the corresponding error analysis was carried out, and it is verified that the method can accurately calibrate the second-order error model coefficient of the gyroscope, and the calibration accuracy can reach the order of 10-4(°/h/g2).
关键词
液浮陀螺仪 /
线振动台 /
二次项误差系数 /
标定
{{custom_keyword}} /
Key words
floated gyroscope /
linear shaking table /
second-order error coefficient /
calibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓益元. 静压液浮陀螺平台系统[M]. 北京: 中国宇航出版社, 2012.
[2] 王跃钢, 彭云辉. 过载-振动复合环境下液浮积分陀螺仪动力学分析[J]. 中国惯性技术学报, 2003, 11(6):80-83.
WANG Yuegang, PENG Yunhui. Dynamics analysis for the liquid floated integral gyro under over loading and vibration compound dynamical environment [J]. Journal of Chinese Inertial Technology, 2003, 11(6):80-83.
[3] 李巍, 任顺清, 赵洪波. 三轴转台误差对陀螺仪标定精确度的影响[J]. 电机与控制学报, 2011, 15(10):101-106.
LI Wei, REN Shunqing, ZHAO Hongbo. Influence of three-axis turntable error on gyro calibration accuracy [J]. Electric Machines and Control, 2011, 15(10):101-106.
[4] 祁家毅, 任顺清, 王常虹. 用三轴转台辨识陀螺仪误差模型系数时的速率试验设计[J]. 宇航学报, 2006, 27(3): 565-570.
QI Jiayi, REN Shunqing, WANG Changhong. Angular velocity test plan design for identifying the error model coefficients of gyro using three-axis turntable [J]. Journal of Astronautics, 2006, 27(3): 565-570.
[5] 任顺清, 陈希军, 王常虹. 惯导测试设备的检测及试验技术[M]. 北京: 科学出版社, 2017
[6] 严恭敏. 惯性仪器测试与数据分析[M]. 北京: 国防工业出版社, 2012
[7] 陈希军, 任顺清, 李巍. 加速度计高阶误差模型系数的标定方法[J]. 中国惯性技术学报, 2010, 18(4):508-512.
CHEN Xijun, REN Shunqing, LI Wei. Calibrating method for high-order coefficients in accelerometer error model [J]. Journal of Chinese Inertial Technology, 2010, 18(4):508-512.
[8] 苏宝库, 李丹东. 加速度计精密离心机试验的优化设计[J]. 中国惯性技术学报, 2010, 18(5):620-624.
SU Baoku, LI Dandong. Optimal design of accelerometer test on precision centrifuge [J]. Journal of Chinese Inertial Technology, 2010, 18(5):620-624.
[9] 王世明, 刘雨, 任顺清. 试验环境条件对离心机稳定性影响分析[J]. 振动与冲击, 2014, 33(20): 187-191.
WANG Shi-ming, LIU Yu, REN Shunqing. Analysis of influence of environmental conditions on centrifuge stability [J]. Journal of Vibration and Shock, 2014, 33(20): 187-191.
[10] L. Keller J. Linear vibration techniques for measuring the cross axis error coefficient in an accelerometer [C]. Guidance and Control Conference. 2013.
[11] 师少龙. 陀螺加速度计在精密线振动台上的测试方法及误差分析[D]. 哈尔滨工业大学, 2016.
[12] REN Shunqing, SUN Chuang. A new method for calibrating nonlinear coefficients of PIGA on linear vibrator [J]. IEEE Transactions on Instrumentation and Measurement, 2018:1-9.
[13] 陈东生, 魏宗康, 房建成. 验证石英加速度计误差模型的火箭橇试验[J]. 中国惯性技术学报, 2009, 17(2):236-239.
CHEN Dongsheng, WEI Zongkang, FANG Jiancheng. Verifying QFPA's error model based on rocket sled testing [J]. Journal of Chinese Inertial Technology, 2009, 17(2):236-239.
[14] 刘建波, 魏宗康, 陈东生. 石英加速度计二次项误差系数显著性分析[J]. 导弹与航天运载技术, 2013(1):45-48.
LIU Jianbo, WEI Zongkang, CHEN Dongsheng. Prominence analysis of quartz flexible pendulous accelerometer’s quadratic coefficient [J]. Missiles and Space Vehicles, 2013(1):45-48.
[15] 王世明. 基于离心机的惯性仪表测试方法研究与误差分析[D]. 哈尔滨工业大学, 2014.
[16] Wang Shi-ming, Meng Ni. A new Multi-position calibration method for gyroscope's drift coefficients on centrifuge [J]. Aerospace Science & Technology, 2017, 68:104-108.
[17] Zeng Ming, Zou Zhong-xian, Yu Zhi-wei, et al. An investigation on the second-order drift error coefficient calibration of gyroscope by vibration table [C]. Control Conference. IEEE, 2015:5374-5380.
[18] Zou Zhong-xian, Zeng Ming, Yu Zhi-wei, et al. Nonlinear least-square iteration for calibrating gyroscopic drift error coefficients based on vibration table [C]. Chinese Control Conference. 2017:5920-5925.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}