一种基于多步回溯算法的铣削稳定性预测方法

于福航1,李茂月1,严复钢1,刘献礼1,梁越昇2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 102-109.

PDF(1663 KB)
PDF(1663 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 102-109.
论文

一种基于多步回溯算法的铣削稳定性预测方法

  • 于福航1,李茂月1,严复钢1,刘献礼1,梁越昇2
作者信息 +

A prediction method of milling stability based on multi-step backtracking algorithm

  • YU Fuhang1, LI Maoyue1, YAN Fugang1, LIU Xianli1, LIANG Steven2
Author information +
文章历史 +

摘要

在加工过程中,由于薄壁件的弱刚性易发生加工颤振,从而对工件表面质量和刀具寿命等造成不良的影响,对铣削过程的稳定性进行预测是至关重要的。通过提出一种多步回溯算法来预测铣削过程的稳定性,将铣削过程离散化成时滞周期方程,在每个时间间隔上采用多步回溯的方法来近似时间周期及时滞项。通过构建状态转移矩阵,根据Floquet理论获得了铣削稳定性边界参数。最后,通过仿真对比实例验证了算法的计算精度和收敛率。结果表明,多步回溯算法具有快速收敛及高计算精度等特点,尤其在低速铣削的稳定性预测中具有良好的应用前景。

Abstract

In process of machining, due to weak rigidity of thin-walled parts, machining chatter is easy to occur, it has adverse effects on surface quality of workpiece and tool life, so it is very important to predict the stability of milling process. Here, a multi-step backtracking algorithm was proposed to predict the stability of milling process. A milling process was discretized into time-delay periodic equations. A multi-step backtracking method was used to approximate time-period and time-delay term in each time interval. By constructing the state transition matrix, milling stability boundary parameters were obtained according to Floquet theory. Finally, the computational accuracy and convergence rate of the algorithm were verified through simulation comparison of actual examples. Results showed that the multi-step backtracking algorithm has characteristics of fast convergence and high computation accuracy; especially, it has good application prospects in stability prediction of low-speed milling.

关键词

稳定性预测 / 回溯算法 / 铣削加工 / 多步插值 / Floquet理论

Key words

stability prediction / backtracking algorithm / milling machining / multi-step interpolation / Floquet theory

引用本文

导出引用
于福航1,李茂月1,严复钢1,刘献礼1,梁越昇2. 一种基于多步回溯算法的铣削稳定性预测方法[J]. 振动与冲击, 2021, 40(1): 102-109
YU Fuhang1, LI Maoyue1, YAN Fugang1, LIU Xianli1, LIANG Steven2. A prediction method of milling stability based on multi-step backtracking algorithm[J]. Journal of Vibration and Shock, 2021, 40(1): 102-109

参考文献

[1]. Sun Y., Jiang S. Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018,135: 38-52.
[2]. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibration, and CNC design. 2nd ed[M]. Cambridge: Cam- bridge University Press, 2012.
[3]. Dai Y., Li H., Xing X., et al., et al. Prediction of chatter stability for milling process using precise integration method[J]. Precision Engineering, 2018, 52: 152-157.
[4]. Zhang Z., Li H., Liu X., et al. Chatter mitigation for the milling of thin-walled workpiece[J]. International Journal of Mechanical Sciences, 2018, 138-139: 262-271.
[5]. Wan M., Gao Ting-Qi., Feng J., et al. On improving chatter stability of thin-wall milling by prestressing[J]. Journal of Materials Processing Technology, 2019, 264: 32-44.
[6]. Tobias S.A., Fishwick W. Theory of Regenerative Machine Tool Chatter, Engineering[J], The Engineer, 1958, 205: 199-203.
[7]. Tlusty J., Polacek M. Examples of the Handling of the Self-excited Vibration of Machine Tools[M], Munich: Hanser publisher, 1957.
[8]. Tlusty J, Polacek M. The stability of machine tools against self-excited vibrations in machining[J]. International Research in Production Engineering, 1963, I(1): 465-74.
[9]. Altintas Y, Budak E.Analytical prediction of stability lobes in mlling[J]. CIRP Annals-Manufacturing Technology, 1995, 44(1):357-362.
[10]. Ozturk E, Budak E. Dynamics and stability of five-axis ball-end milling[J]. Journal of Manufacturing Science and Engineering, 2010, 132(2): 021003.
[11]. Altintas Y, Engin S, Budak E. Analytical stability prediction and design of variable pitch cutters[J]. Journal of Manufacturing Science and Engineering, 1999, 121(2): 173-178.
[12]. Turner S, Merdol D, Altintas Yet al. Modelling of the stability of variable helix end mills[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9): 1410-1416.
[13]. Davies M A, Pratt J, Dutterer B, et al. Stability prediction for low radial immersion milling[J]. Journal of Manufacturing Science and Engineering, 2002, 124(2): 217-225.
[14]. Merdol S, Altintas Y. Multi frequency solution of chatter stability for low immersion milling. Journal of Manufacturing Science and Engineering[J], 2004, 126(3): 459-66.
[15]. INSPERGER T., STEPAN G. Semi-discretization method for delayed systems[J]. International Journal for Numerical Methods in Engineering, 2002,55(5): 503-518.
[16]. INSPERGER T., STEPAN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering, 2004, 61(1): 117-141.
[17]. INSPERGER T., STEPAN G, TURI J. On the higher-order semi-discretizations for periodic delayed systems[J]. Journal of Sound & Vibration, 2008, 13(1): 334-341.
[18]. Ding Y., Zhu L. M., Zhang X. J., et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools&Manufacture, 2010, 50(5): 502-509.
[19]. Quo Q., Sun Y., Jiang Y. On the accurate calculation of milling stability limits using third-order full-discretization method[J]. International Journal of Machine Tools and Manufacture, 2012,62: 61-66.
[20]. Li M., Zhang G., Huang Y. Complete discretization scheme for milling stability prediction[J]. Nonlinear Dynamics, 2013, 71(1-2): 187-199.
[21]. Li Z., Liu Q., Ming X., et al. Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation[J]. International Journal of Advanced Manufacturing Technology, 2014,73(1-4): 433-442.
[22]. Jiang S., Sun Y., Yuan X., et al. A second-order semi-discretization method for the efficient and accurate stability prediction of milling process[J], International Journal of Advanced Manufacturing Technology, 2017, 92: 583–595.
[23]. Eksioglu C, Kilic Z M, Altintas Y. Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems[J]. Journal of Manufacturing Science and Engineering, 2012, 134(6):061006.
[24]. Zhang Z., Li H., Meng G., et al. A novel approach for the prediction of the milling stability based on the Simpson method[J]. International Journal of Machine Tools & Manufacture. 2015, 99: 43-47.
[25]. Zhang X. J., Xiong C. H., Ding Y., et al. Prediction of chatter stability in high speed milling using the numerical differentiation method[J]. International Journal of Advanced Manufacturing Technology, 2016, 89(9-12): 1-10.
[26]. 智红英,闫献国,杜娟等. 预测铣削稳定性的隐式Adams方法[J]. 机械工程学报,2018,54(23):223-232.
ZHI Hongying, YAN Xianguo, DU Juan, et al. Prediction of the Milling Stability Based on the Implicit Adams Method [J]. Journal of Mechanical Engineering, 2018, 54(23): 223-232.
[27]. 智红英,闫献国,杜娟等. 预测铣削稳定性的Hamming线性多步法[J]. 振动与冲击,2018,37(22):67-74.
ZHI Hongying, YAN Xianguo, DU Juan, et al. Prediction of the milling stability based on the Hamming linear multistep method [J]. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(22): 67-74.
[28].Dai Y., Li H., Xing X., et al. Prediction of chatter stability for milling process using precise integration method[J], Precision Engineering, 2018, 52(152-157): 0141-6359.
[29]Tlusty J, Ismail F. Special aspects of chatter in milling[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1983, 105(1): 24-32.
[30] Wu D. W. A new approach of formulating the transfer function of dynamic cutting processes[J]. Journal of Engineering for Industry, 1989, 111(1): 37-47.
[31] Budak E, Tunc L T. Identification and modeling of process damping in turning and milling using a new approach[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1): 403-408.
[32] Wan M, Ma Y C, Feng J, et al. Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces[J]. International Journal of Mechanical Sciences, 2016, 114: 120-131.
[33].Li Z., Jiang S., Sun Y. Chatter stability and surface location error predictions in milling with mode coupling and process damping[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017:095440541770822.
[34].Ahmadi K., Ismail F. Analytical stability lobes including nonlinear process damping effect on machining chatter[J]. International Journal of Machine Tools & Manufacture, 2011, 51(4): 296-308.

PDF(1663 KB)

Accesses

Citation

Detail

段落导航
相关文章

/