参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断

王振亚1,姚立纲1,戚晓利2,张俊1,郑近德2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 110-118.

PDF(3378 KB)
PDF(3378 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 110-118.
论文

参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断

  • 王振亚1,姚立纲1,戚晓利2,张俊1,郑近德2
作者信息 +

Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning

  • WANG Zhenya1,   YAO Ligang1,   QI Xiaoli2,   ZHANG Jun1,   ZHENG Jinde2
Author information +
文章历史 +

摘要

针对行星齿轮箱特征提取困难的问题,提出一种基于参数优化变分模态分解与多域流形学习的故障诊断方法。首先,利用樽海鞘群优化变分模态分解(SSO-VMD)对信号进行分解与重构,降低噪声干扰;然后,从多域提取故障特征,并采用改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap)算法进行降维处理,获取低维故障特征;最后,运用人工蜂群优化支持向量机(ABC-SVM)多故障分类器进行诊断识别。将SSO-VMD与经验模态分解进行对比,仿真信号分析结果验证SSO-VMD的优越性。将所提故障诊断方法应用于行星齿轮箱故障诊断实验分析中,结果表明:多域特征提取效果优于时域、频域和尺度域等单域特征提取效果;ISSL-Isomap降维效果优于等度规映射,t-分布邻域嵌入,线性判别分析,加权等度规映射和监督等度规映射等算法;所提方法故障识别率达到100%,能够有效识别出行星齿轮箱各工况类型。

Abstract

Aiming at the problem of features extraction of planetary gearbox being difficult, a fault diagnosis method based on parameter optimized variational mode decomposition (VMD) and multi-domain manifold learning was proposed. Firstly, the salp swarm optimization variational mode decomposition (SSO-VMD) was utilized to decompose and reconstruct signals to reduce noise interference. Then, fault features were extracted from multi-domain, and the improved supervised self-organizing incremental learning neural network boundary punctuation isometric mapping (ISSL-Isomap) algorithm was used to reduce dimension, and acquire low-dimensional fault features. Finally, the artificial bee colony support vector machine (ABC-SVM) multi-fault classifier was used to do diagnosis and identification. The SSO-VMD was compared with the empirical mode decomposition (EMD), and the superiority of SSO-VMD was verified with simulation signal analysis results. The proposed fault diagnosis method was applied in planetary gearbox fault diagnosis test analysis. Results showed that the multi-domain feature extraction is better than the feature extraction in single-domain including time domain, frequency one and scale one; the dimension reduction effect of ISSL-Isomap is better than those of Isomap, t-distributed stochastic neighborhood embedding, linear discriminant analysis, weighted Isomap and supervised Isomap; the fault recognition rate of the proposed method reaches 100%, and it can effectively recognize various types working conditions of planetary gearbox.

关键词

变分模态分解 / 等度规映射 / 流形学习 / 支持向量机 / 行星齿轮箱 / 故障诊断

Key words

variational mode decomposition (VMD) / isometric mapping (Isomap) / manifold learning / support vector machine / planetary gearbox / fault diagnosis

引用本文

导出引用
王振亚1,姚立纲1,戚晓利2,张俊1,郑近德2. 参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(1): 110-118
WANG Zhenya1, YAO Ligang1, QI Xiaoli2, ZHANG Jun1, ZHENG Jinde2. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning[J]. Journal of Vibration and Shock, 2021, 40(1): 110-118

参考文献

[1] 雷亚国, 何正嘉, 林京, 等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19):59-67.
LEI Ya-guo, HE Zheng-jia, LIN Jing, et al. Research advances of fault diagnosis technique for planetary gearboxes[J]. Journal of Mechanical Engineering, 2011, 47(19):59-67.
 [2] 丁闯, 张兵志, 冯辅周, 等. 局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017, 36(17): 55-60.
DING Chuang, ZHANG Bing-zhi, FENG Fou-zhou, et al. Application of local mean decomposition and permutation entropy in fault diagnosis of planetary gearboxes[J]. Journal of Vibration and Shock, 2017, 36(17): 55-60.
 [3] 徐金梧, 徐科. 小波变换在滚动轴承故障诊断中的应用[J]. 机械工程学报, 1997, 33(4):50-55.
XU Jin-wu, XU Ke. Application of wavelet transform in failure diagnosis of rolling bearings[J]. Journal of Mechanical Engineering, 1997, 33(4):50-55.
 [4] 杨宇, 于德介, 程军圣. 基于经验模态分解的滚动轴承故障诊断方法[J]. 中国机械工程, 2004, 15(10):908-911.
YANG Yu, YU De-jie, CHENG Jun-sheng. Roller bearing fault diagnosis method based on EMD[J]. China Mechanical Engineering, 2004, 15(10):908-911.
 [5] 程军圣, 杨怡, 张亢, 等. 基于局部均值分解的循环频率和能量谱在齿轮故障诊断中的应用[J]. 振动工程学报, 2011, 24(1):78-83.
CHENG Jun-sheng, YANG Yi, ZHANG Kang, et al. Application of cycle frequency and energy spectrum based on local mean decomposition to gear fault diagnosis[J]. Journal of Vibration Engineering, 2011, 24(1):78-83.
 [6] 向玲, 鄢小安. 汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J]. 动力工程学报, 2014, 34(12):945-951.
XIANG Ling, YAN Xiao-an. Performance contrast between LMD and EMD in fault diagnosis of turbine rotors[J]. Journal of Chinese Society of Power Engineering, 2014, 34(12):945- 951.
 [7] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4):638-648.
TANG Gui-ji, WANG Xiao-long. Variational mode decompo- sition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2016, 29(4):638-648.
 [8] Dragomiretskiy K, Zosso D. Variational mode decomposi- tion[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
 [9] Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114(12):163-191.
[10] Zhang Y, Li B W, Wang Z B, et al. Fault diagnosis of rotating machine by isometric feature mapping[J]. Journal of Mechanical Science and Technology, 2013, 27(11):3215-3221.
[11] Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment[J]. SIAM journal on scientific computing, 2004, 26(1):313-338.
[12] Shang F, Jiao L C, Shi J, et al. Robust Positive semidefinite L-Isomap Ensemble[J]. Pattern Recognition Letters, 2011, 32(4):640-649.
[13] 姜战伟, 郑近德, 潘海洋, 等. 基于多尺度时不可逆与t-SNE流形学习的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(17):61-68.
JIANG Zhan-wei, ZHENG Jin-de, PAN Hai-yang, et al. Rolling bearing fault diagnosis method based on multiscale time irreversibility and t-SNE manifold learning[J]. Journal of Vibration and Shock, 2017, 36(17):61-68.
[14] 李锋, 汤宝平, 王家序, 等. 基于图嵌入概率半监督判别分析的故障辨识[J]. 机械工程学报, 2017, 53(9):92-100.
LI Feng, TANG Bao-ping, WANG Jia-xu, et al. Fault identification method based on graph-implanted probability- based semi-supervised discriminant analysis[J]. Journal of Mechanical Engineering, 2017, 53(9):92-100.
[15] 戚晓利, 王振亚, 吴保林, 等. 基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断[J]. 航空动力学报, 2019, 34(4):744-755.
QI Xiao-li, WANG Zhen-ya, WU Bao-lin, et al. Planetary gearbox fault diagnosis based on ACMPE, ISSL-Isomap and GWO-SVM[J]. Journal of Aerospace Power, 2019, 34(4): 744-755.
[16] Yang D, Liu Y, Li S, et al. Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm[J]. Mechanism and Machine Theory, 2015, 90(8): 219- 229.
[17] Chu D, Liao L Z, Ng M K, et al. Incremental linear discriminant analysis: a fast algorithm and comparisons[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 26(11):2716-2735.
[18] Vlachos M, Domeniconi C, Gunopulos D, et al. Non-linear dimensionality reduction techniques for classification and visualization[C]// Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. New York:ACM, 2002:645-651.
[19] Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(6):1098-1107.
[20] 张小龙, 张氢, 秦仙蓉, 等. 基于ITD复杂度和PSO-SVM的滚动轴承故障诊断[J]. 振动与冲击, 2016, 35(24): 102-107.
ZHANG Xiao-long, ZHANG Qing, QIN Xian-rong, et al. Rolling bearing fault diagnosis based on ITD Lempel-Ziv complexity and PSO-SVM[J]. Journal of Vibration and Shock, 2016, 35(24):102-107.

PDF(3378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/