为了研究旁通水路对离心泵空化性能的影响规律,以一台比转速为32的低比转速离心泵为研究对象,在蜗壳第八断面靠进口侧位置处至吸入段搭建一旁通管路。采用修正的SST k-ω湍流模型和Kubota空化模型,在不同空化数下,对原型泵和带有旁通水路的离心泵进行三维非定常数值模拟,并同实验结果进行对比。结果表明:低比转速离心泵在搭建旁通水路后运行时扬程和效率均有小幅下降,在设计工况下,实验值中扬程下降2.30%,效率下降3.07%,模拟值中扬程下降3.10%,效率下降1.80%。空化初生及发展阶段,旁通水路可以有效增大近壁湍动能,改善压力分布,抑制空泡增长及脱落,改善流场结构;扬程断裂后,旁通水路不能有效抑制空化反而加剧了其严重程度。旁通水路对其涉及流域内压力脉动造成小幅扰动。
Abstract
In order to study the influence law of bypass waterway on cavitation characteristics of centrifugal pump, a low specific speed centrifugal pump with a specific speed of 32 was taken as the study object, a bypass waterway was built from the eighth section of the volute near the inlet side to the suction section. The modified SST k-ω turbulence model and Kubota cavitation model were used to do the 3-D non-steady numerical simulation for the original type pump and the pump with the bypass waterway under different cavitation numbers. The simulation results were compared with test ones. Results showed that both head and efficiency of the low specific speed centrifugal pump decrease slightly after building the bypass waterway; under the designed working condition, test values of head and efficiency decrease by 2.30% and 3.07%, respectively and simulated values of head and efficiency decrease by 3.10% and 1.80%, respectively; in initial and development stage of cavitation, the bypass waterway can effectively increase near-wall turbulent kinetic energy, improve pressure distribution, restrain growth and fall off of cavitation and improve flow field structure; after head is broken, the bypass waterway can’t effectively restrain cavitation, but aggravate its severity; the bypass waterway causes a small disturbance to the pressure fluctuation in flow field involved.
关键词
离心泵 /
旁通水路 /
空化 /
数值模拟
{{custom_keyword}} /
Key words
centrifugal pump /
bypass waterway /
cavitation /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1]. BRENNEN C E.Hydrodynamics of pumps[M]. Norwich,VT,USA: Concepts ETI Inc. 1994.
[2]. 牟介刚, 陈莹, 谷云庆, 等. 不同空化程度下离心泵流固耦合特性研究[J]. 振动与冲击, 2016, 35(23): 203-208.
MOU Jiegang,CHEN Ying,GU Yunqing,et al.Fluid-solid interaction characteristics of a centrifugal pump under different cavitation levels [J].JOURNAL OF VIBRATION AND SHOCK. 2016, 35(23): 203-208. ( in Chinese)
[3]. 王松林, 谭磊, 王玉川. 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击, 2013,32(22):168-173.
WANG Song-lin,TAN Lei,WANG Yu-chuan. Characteristics of transient cavitation flow and pressure fluctuation for a centrifugal pump. JOURNAL OF VIBRATION AND SHOCK. 2013,32(22):168-173. ( in Chinese)
[4]. BRENNENC E. Multifrequency instability of cavitating inducers[J]. ASME Journal of Fluids Engineering,2007,129( 6) : 731 - 736.
[5]. KAWANAMI Y,KATO H,YAMAGUHIH H,et al. Mechanism and control of cloud cavitati[J]. ASME Journal of Fluids Engineering,1997,119( 4) : 788 - 794.
[6]. MEDVITZ R B,KUNZ R F,BOGER D A,et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD[J]. ASME Journal of Fluid Engineering,2002,124 ( 2) : 377 - 383.
[7]. 罗先武, 张瑶, 彭俊奇, 等. 叶轮进口几何参数对离心泵空化性能的影响[J]. 清华大学学报( 自然科学版) , 2008, 48 ( 5 ) :836 - 839.
LUO Xianwu,ZHANG Yao,PENG Junqi,et al. Effect of impeller inlet geometry on centrifugal pump cavitation performance[J].Journal of Tsinghua University ( Science and Technology) ,2008,48 ( 5) : 836 - 839. ( in Chinese)
[8]. 赵伟国, 赵国寿, 咸丽霞, 等. 离心泵叶片表面布置障碍物抑制空化的数值模拟与实验[J / OL]. 农业机械学报, 2017, 48 ( 9) :111 - 120. http: ∥www. j-csam. org / jcsam / ch / reader / view _ abstract. aspx? file _ no = 20170914&flag = 1. DOI: 10. 6041 / j. issn.1000-1298. 2017. 09. 014.
ZHAO Weiguo,ZHAO Guoshou,XIAN Lixia,et al. Numerical simulation and experiment of obstacle arrangement on centrifugal pump blade to suppress cavitation [J / OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48 ( 9 ) : 111 -120. ( in Chinese)
[9]. 王洋, 谢山峰, 王维军, 等. 开缝叶片低比转数离心泵空化性能的数值模拟[J]. 排灌机械工程学报, 2016, 34 ( 3) : 210 - 215.
WANG Yang,XIE Shanfeng,WANG Weijun,et al. Numerical simulation of cavitation performance of low specific speed centrifugal pump with slotted blades [J].Journal of Drainage and Irrigation Machinery Engineering,2016,34 ( 3) : 210 - 215. ( In Chinese)
[10]. 温懋, 张雷, 韩昊, 等. 利用水喷射技术防止水泵的汽蚀[J]. 可再生能源, 2010, 28 (0 2):145-147.
WEN Mao ,ZHANG Lei ,HAN Hao ,et al.Water -jet -technology and its application for preventing pump –cavitation [J].Renewable Energy Resources,2010,28 (0 2):145-147. ( in Chinese)
[11]. Jiang J ,Li Y H ,Pei C Y ,et al. Cavitation performance of high-speed centrifugal pump with annular jet and inducer at different temperatures and void fractions[J]. Journal of Hydro dynamics,Ser. B,2019.
[12]. 牟介刚, 王荣, 谷云庆, 等. 引射吸水室对离心泵性能的影响[J].中南大学学报(自然科学版), 2016, 47(03):755-762.
MOU Jiegang ,WANG Rong ,GU Yunqing,et al. Influence of jetting suction chamber on performance of centrifugal pumps [J]. Journal of Central South University (Science and Technology) ,2016,47(03):755-762. ( in Chinese)
[13]. 林玲. 新型高汽蚀性能离心泵吸水室研究[D].浙江工业大学, 2013.
Lin Ling. Research on A New Suction Chamber to Improve Cavitation Performance of Centrifugal pump [D]. ZheJiang University of Technology,2013. ( in Chinese)
[14]. 朱凯程. 引射离心泵内部流动和空化特性研究[D]. 浙江理工大学, 2019.
Zhu Chengkai. Study on internal flow and cavitation characteristics of centrifugal pump with jetting device [D]. Zhejiang Sci-Tech University,2019. ( in Chinese)
[15]. 吴昱, 朱祖超. 利用引射结构提高离心泵的汽蚀性能[J]. 工程设计学报, 2002(02):86-88.
WU Yu,ZHU Zu-chao. Using jetting equipment to improve the suction performance of centrifugal pump [J]. Engineering Design,2002(02):86-88. ( in Chinese)
[16]. 吴昱. 引射离心泵的理论分析与试验研究[D]. 浙江大学, 2003.
WU Yu. Theoretical Analysis and Experimental Study of Ejected Centrifugal Pump [D]. Zhejiang University,2003. ( in Chinese)
[17]. GB/T3216-2016. 回转动力泵水力性能验收试验1级、 2级和3级, 2016.
Rotodynamic pumps-Hydraulicper formace acceptance tests –Grades 1,2 and 3,2016.
[18]. 张德胜, 吴苏青, 施卫东, 等. 不同湍流模型在轴流泵叶顶泄漏涡模拟中的应用与验证[J].农业工程学报, 2013,29( 13) :46 - 53.
ZHANG Desheng,WU Suqing,SHI Weidong,et al.Application and experiment of different turbulence models for simulating of the tip leakage vortex in axial flow pump [J].Transactions of the CSAE,2013,29 ( 13) : 46 - 53. ( in Chinese)
[19]. 李晓俊, 袁寿其, 潘中永, 等.离心泵边界层网格的实现及应用评价[J].农业工程学报, 2012, 28( 20) : 67 - 72.
LI Xiaojun,YUAN Shouqi,PAN Zhongyong,et al. Realization and application of near-wall mesh in centrifugal pumps[J].Transactions of the CSAE,2012,28 ( 20) : 67 - 72. ( in Chinese)
[20]. Valdes J R ,Rodríguez J M ,Monge R,et al. Numerical simulation and experimental validation of the cavitating flow through a ball check valve [J]. Energy conversion and management ,2014,78: 776-786.
[21]. REBOUD J L,STUTZ B,COUTIER O. Two phase flow structure of cavitation experiment and modeling of unsteady effects[C]∥Proceedings of the 3rd International Symposium on Cavitation,1998.
[22]. ZWART P J,GERBER A G,BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]∥ Proceedings of International Conference on Multiphase Flow,2004.
[23]. JI Bin,LUO Xianwu,WU Yulin,et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow,2013,51: 33 - 43.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}