深度置信网络迁移学习的行星齿轮箱故障诊断方法

陈仁祥1,2,杨星1,胡小林3,李军1,陈才4,唐林林1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 127-133.

PDF(2063 KB)
PDF(2063 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 127-133.
论文

深度置信网络迁移学习的行星齿轮箱故障诊断方法

  • 陈仁祥1,2,杨星1,胡小林3,李军1,陈才4,唐林林1
作者信息 +

Planetary gearbox fault diagnosis method based on deep belief network transfer learning

  • CHEN Renxiang1,2, YANG Xing1, HU Xiaolin3, LI Jun1, CHEN Cai4, TANG Linlin1
Author information +
文章历史 +

摘要

实际工程中行星齿轮箱受工况、运行情况等因素的影响,获取的数据难以满足训练和测试数据独立同分布且训练数据充足的条件,直接影响故障诊断效果。为此,提出一种深度置信网络(Deep Belief Network,DBN)迁移学习的行星齿轮箱故障诊断方法。首先,将辅助标记数据的原始信号频谱作为DBN网络的输入,逐层更新网络的权重和偏置值对输入信号进行分级表达,以获得其分布式特征表达,得到基于辅助标记样本的DBN预模型。再利用少量的目标标记样本微调DBN预模型的网络权重和偏置值,实现DBN网络的权重和偏置值从源域到目标域的迁移以适应新的目标样本识别,最终提高目标域样本故障识别准确率。通过行星齿轮箱故障模拟实验验证了所提方法的可行性和有效性。

Abstract

Planetary gearbox is affected by many factors, such as, working condition and operational situation in practice. The obtained data are difficult to meet the condition of training and test data being independent and identically distributed and training data being sufficient. All these directly affect planetary gearbox fault diagnosis effect. Here, a planetary gearbox fault diagnosis method based on deep belief network (DBN) transfer learning was proposed. Firstly, the original signal spectrum of the auxiliary marker data was taken as the input of the DBN network. The weight and bias value of the network were updated layer by layer to hierarchically express the input signal and obtain its distributed feature expression, and a DBN pre-model based on the auxiliary marker samples was obtained. Then, a small number of target labeled samples were used to finely tune the network weight and bias value of the DBN pre-model, and realize the migration of the weight and bias value of the DBN network from the source domain to the target domain for the purpose of adapting to the new target sample recognition and finally improving the correctness rate of the target domain sample fault identification. Finally, the feasibility and effectiveness of the proposed method were verified with fault simulation tests of planetary gearbox.

关键词

行星齿轮箱 / 故障诊断 / 深度置信网络 / 迁移学习

Key words

planetary gearbox / fault diagnosis / deep belief network (DBN) / transfer learning

引用本文

导出引用
陈仁祥1,2,杨星1,胡小林3,李军1,陈才4,唐林林1. 深度置信网络迁移学习的行星齿轮箱故障诊断方法[J]. 振动与冲击, 2021, 40(1): 127-133
CHEN Renxiang1,2, YANG Xing1, HU Xiaolin3, LI Jun1, CHEN Cai4, TANG Linlin1. Planetary gearbox fault diagnosis method based on deep belief network transfer learning[J]. Journal of Vibration and Shock, 2021, 40(1): 127-133

参考文献

[1] 雷亚国, 何正嘉, 林京,等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19):59-67.
Lei Yaguo, He Zhenjia, Lin Jing, et al.Research progress on the fault diagnosis of planetary gearbox [J] .Chinese Journal of Mechanical Engineering, 2011, 47 (19): 59-67.
[2] Liu R , Yang B , Zio E , et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47.
[3] Gao Z, Cecati C, Ding S X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches[J]. IEEE Transactions on Industrial Electronics2015, 62(6):3768-3774.
[4] Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130(C):377-388.
[5] Luyang J,Taiyong W,Ming Z ,et al. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox[J]. Sensors, 2017, 17(2):414-.
[6] Zeng, X., Liao, Y., & Li, W. (2016, November). Gearbox fault classification using S-transform and convolutional neural network. In Sensing Technology (ICST), 2016 10th International Conference on (pp. 1-5). IEEE.
[7] Chen H, Wang J, Tang B, et al. An integrated approach to planetary gearbox fault diagnosis using deep belief networks[J]. Measurement Science & Technology, 2017, 28(2):025010.
[8] Chen R X, Huang X, Yang L X, et al. Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet tranform[J]. COMPUTERS IN INDUSTRY, 2019, 106(10):48-59.
[9] PAN S J,Yang Q.A Servey on Transfer Learning[J].IEEE Transactions,2010,22(10):1345-1359.
[10] Rajagopal A K, Subramanian R, Vieriu R L, et al. Exploring Transfer Learning Approaches for Head Pose Classification from Multi-view Surveillance Images[J]. International Journal of Computer Vision, 2014, 109(1-2):146-167.
[11] 雷亚国, 杨彬, 杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019.
Lei Yaguo, Yang Bin, Du Zhaoyu, et al.Deep migration diagnosis method for mechanical equipment failure under big data[J]. Journal of Mechanical Engineering, 2019.
[12] 陈超,沈飞,严如强。改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1):33-40.
Bearing Fault Diagnosis Based on Improved LSSVM Migration Learning Method[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 33-40.
[13] 段礼祥, 谢骏遥, 王凯等. 基于不同工况下辅助数据集的齿轮箱故障诊断[J]. 振动与冲击, 2017(10).
Duan Lixiang, Xie Junyao, Wang Kai, et al. Gearbox fault diagnosis based on auxiliary dataset under different working conditions[J]. Journal of Vibration and Shock, 2017(10).
[14] HINTON G E, SALAKHUTDINOV R. Reducion the dimensionality of data with neural networks[J]. Science, 2006,313: 504−507.
[15] 李巍华, 单外平, 曾雪琼. 基于深度信念网络的轴承故障分类识别[J]. 振动工程学报, 2016, 29(2):340-347.
     LI Weihua, Shan Waiping, Zeng Xueqiong.Fault Classification of Bearings Based on Deep Belief Network [J] .Journal of Vibration Engineering, 2016, 29 (2): 340-347.  
[16] Chen R X, Mu Z Y, Yang L X, et al. Pedestal looseness extent recognition method for rotating machinery based on vibration sensitive time-frequency feature and manifold learning[J]. Journal of Vibroengineering, 2016, 18(8):5174-5191.
 

PDF(2063 KB)

Accesses

Citation

Detail

段落导航
相关文章

/