[1] 雷亚国, 何正嘉, 林京,等. 行星齿轮箱故障诊断技术的研究进展[J]. 机械工程学报, 2011, 47(19):59-67.
Lei Yaguo, He Zhenjia, Lin Jing, et al.Research progress on the fault diagnosis of planetary gearbox [J] .Chinese Journal of Mechanical Engineering, 2011, 47 (19): 59-67.
[2] Liu R , Yang B , Zio E , et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47.
[3] Gao Z, Cecati C, Ding S X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches[J]. IEEE Transactions on Industrial Electronics2015, 62(6):3768-3774.
[4] Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130(C):377-388.
[5] Luyang J,Taiyong W,Ming Z ,et al. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox[J]. Sensors, 2017, 17(2):414-.
[6] Zeng, X., Liao, Y., & Li, W. (2016, November). Gearbox fault classification using S-transform and convolutional neural network. In Sensing Technology (ICST), 2016 10th International Conference on (pp. 1-5). IEEE.
[7] Chen H, Wang J, Tang B, et al. An integrated approach to planetary gearbox fault diagnosis using deep belief networks[J]. Measurement Science & Technology, 2017, 28(2):025010.
[8] Chen R X, Huang X, Yang L X, et al. Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet tranform[J]. COMPUTERS IN INDUSTRY, 2019, 106(10):48-59.
[9] PAN S J,Yang Q.A Servey on Transfer Learning[J].IEEE Transactions,2010,22(10):1345-1359.
[10] Rajagopal A K, Subramanian R, Vieriu R L, et al. Exploring Transfer Learning Approaches for Head Pose Classification from Multi-view Surveillance Images[J]. International Journal of Computer Vision, 2014, 109(1-2):146-167.
[11] 雷亚国, 杨彬, 杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019.
Lei Yaguo, Yang Bin, Du Zhaoyu, et al.Deep migration diagnosis method for mechanical equipment failure under big data[J]. Journal of Mechanical Engineering, 2019.
[12] 陈超,沈飞,严如强。改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1):33-40.
Bearing Fault Diagnosis Based on Improved LSSVM Migration Learning Method[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 33-40.
[13] 段礼祥, 谢骏遥, 王凯等. 基于不同工况下辅助数据集的齿轮箱故障诊断[J]. 振动与冲击, 2017(10).
Duan Lixiang, Xie Junyao, Wang Kai, et al. Gearbox fault diagnosis based on auxiliary dataset under different working conditions[J]. Journal of Vibration and Shock, 2017(10).
[14] HINTON G E, SALAKHUTDINOV R. Reducion the dimensionality of data with neural networks[J]. Science, 2006,313: 504−507.
[15] 李巍华, 单外平, 曾雪琼. 基于深度信念网络的轴承故障分类识别[J]. 振动工程学报, 2016, 29(2):340-347.
LI Weihua, Shan Waiping, Zeng Xueqiong.Fault Classification of Bearings Based on Deep Belief Network [J] .Journal of Vibration Engineering, 2016, 29 (2): 340-347.
[16] Chen R X, Mu Z Y, Yang L X, et al. Pedestal looseness extent recognition method for rotating machinery based on vibration sensitive time-frequency feature and manifold learning[J]. Journal of Vibroengineering, 2016, 18(8):5174-5191.