长周期地面运动和SSI效应对风机动力响应的影响

霍涛

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 142-150.

PDF(3280 KB)
PDF(3280 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 142-150.
论文

长周期地面运动和SSI效应对风机动力响应的影响

  • 霍涛
作者信息 +

Effects of long-period ground motion and SSI effect on dynamic response of wind turbine

  • HUO Tao
Author information +
文章历史 +

摘要

针对建设在软土地基上的大功率风机结构,需要同时考虑长周期地面运动和土-结构相互作用(SSI)的影响。为了全面研究长周期地面运动和SSI效应对风机塔筒结构动力响应的影响,本文首先基于某1.25MW变桨距风机结构建立了包含叶片、机舱、塔筒和基础的结构整体有限元模型,并进行了模态分析。其次在世界地震记录数据库中选择了1条普通波(EI-Cento波)和2条长周期波(HKD054波和CDAO波),并对两种波的时频特性进行对比分析,同时建立了考虑与不考虑SSI效应的对比模型。最后利用ANSYS软件并采用时程分析法对考虑与不考虑SSI效应的风机结构在两类地震波作用下的地震响应进行对比分析,并对叶片与塔筒的碰撞问题、门洞区域的应力集中、机舱内主轴在剪力作用下的破坏以及基础的失效问题进行了进一步的研究。结果表明:长周期地震作用下的风机结构位移、加速度、应力和内力响应值均大于普通波作用下的结果,在此基础上某些响应甚至会被SSI效应进一步放大。因此在风机结构的抗震设计中需要考虑长周期地震作用和SSI响应的影响,特别是在软土地基区域。另外,塔筒与门框连接区域、机舱内主轴和基础等薄弱区域需要适当加强。

Abstract

For large-scale wind turbine structures built on soft soil foundation, effects of both long period ground motion and soil-structure interaction (SSI) should be considered. Here, in order to fully study effects of long period ground motion and SSI on dynamic response of wind turbine tower structures, firstly, based on a certain 1.25 MW variable pitch wind turbine structure, an integral finite element (FE) model for the wind turbine structure consisting of blades, nacelle, tower and foundation was established to conduct modal analysis. Secondly, two long-period waves (HKD054 wave and CDAO  wave) and an ordinary wave (EI-Cento wave) were selected in the worldwide earthquake record database, and time-frequency characteristics of the two kinds of seismic waves were analyzed contrastively. Moreover, two FE dynamic models for the wind turbine structure considering SSI effect and not considering SSI effect were established, respectively. Finally, the software ANSYS and the time history analysis method were used to analyze seismic responses of the wind turbine structure considering SSI effect and not considering SSI under action of the two kinds of seismic waves. In addition, collision between blade and tower, stress concentration in door hole area, failure of main shaft in nacelle under action of shear force and failure of foundation were further studied. Results showed that under action of long-period seismic waves, the wind turbine structure responses of displacement, acceleration, stress and internal force are larger than those under action of ordinary seismic wave, some responses even  are amplified by SSI effect, so long-period ground motion and SSI effect should be considered in the seismic design of wind turbine structures, especially, in soft soil foundation regions; the connecting area between tower and door frame, and the weak areas of main shaft in nacelle and foundation need to be appropriately enhanced.

关键词

风机结构整体有限模型 / 风机塔筒结构 / 长周期地面运动 / 土-结构相互作用(SSI) / 动力响应分析

Key words

integral finite element model of wind turbine structure / wind turbine tubular structure / long-period ground motion / soil-structure interaction (SSI) / dynamic response analysis

引用本文

导出引用
霍涛. 长周期地面运动和SSI效应对风机动力响应的影响[J]. 振动与冲击, 2021, 40(1): 142-150
HUO Tao. Effects of long-period ground motion and SSI effect on dynamic response of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(1): 142-150

参考文献

[1]. 柯世堂, 王同光, 曹九发, 等. 考虑土-结相互作用大型风力发电结构风致响应分析 [J].土木工程学报, 2015, 35(2): 18-25.
KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, et al. Analysis on win-induced response of large wind power structures considering soil-structure interaction [J]. China Civil Engineering Journal, 2015, 35(2): 18-25.
[2]. 李春锋, 张旸. 长周期地震动衰减关系研究的迫切性 [J]. 地震地磁观测与研究, 2006, 27(3): 1-8.
LI Chun-feng, ZHANG Yang. The urgency of study on the attenuation relationship of long period ground motion [J]. Seismological and Geomagnetic Observation and Research, 2006, 27(3): 1-8.
[3]. Bazeos N, Hatzigeorgiou G, Hondros I, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24(8): 1015-1025.
[4]. Lavassas I, Nikolaidis G, Zervas P, et al. Analysis and design of the prototype of a steel 1-MW wind turbine tower [J]. Engineering Structures, 2003, 25(8): 1097-1106.
[5].   Zhao X and Maißer P. Seismic response analysis of wind turbine towers including soil-structure interaction [J]. Journal of Multi-body Dynamics, 2006, 220(1), 53-61.
[6].   贺广零, 周勇, 李杰. 风力发电高塔系统地震动力响应分析[J]. 工程力学, 2009, 26(7): 72-77.
HE Guang-ling, ZHOU Yong and LI Jie. Seismic analysis of wind turbine system [J]. Engineering Mechanics, 2009, 26(7): 72-77.
[7].   Taddei F and Meskouris K. Seismic Analysis of Onshore Wind Turbine including Soil-structure Interaction Effects[J]. Seismic Design of Industrial Facilities, 2014, 511-522.
[8].   Alati N, Failla G and Arena F. Seismic Analysis of Offshore Wind Turbines on Bottom-fixed support Structures[J]. Phil. Trans. R. Soc. A, 2015, 373(3), doi: 10.1098/rsta.2014.0086.
[9].   金鑫, 何玉林, 刘桦等. 风力发电机耦合振动分析[J]. 振动与冲击, 2007, 26(8): 144-153.
JIN Xin, HE Yu-lin, LIU Hua, et al. Coupling vibration analysis of wind turbine system[J]. Journal of Vibration and Shock, 2007, 26(8): 144-153.
[10]. Richard F, Woods R, Hall Jr J. Vibration of soils and foundations [M]. New York: Prentice-Hall, 1970.
[11]. Wolf J P. Spring-dashpot-mass models for foundation vibrations [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(9): 931-949.
[12].  Koketsu K, Hatayama K, Furumura T, et al. Damaging Long-period Ground Motions from the 2003 Mw 8.3 Tokachi-oki, Japan Earthquake[J]. Seismological Research Letters, 2005, 76(1): 67-73.
[13].  中华人民共和国建设部, 建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.
Ministry of Construction of the People’s Republic of China. Code for Seismic Design of Buildings [S]. Beijing: China Architecture and Building Press, 2010.
[14].  Watson J A, Abrahamson N A. Selection of ground motion time series and limits on scaling [J]. Soil Dynamics and Earthquake Engineering, 2006, 6 (5): 477-482.
[15].  中华人民共和国建设部. 建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012.
Ministry of Construction of the People’s Republic of China. Load Code for the Design of Building Structures [S]. Beijing:China Architecture and Building Press, 2012.
[16]. Murtagh P, Basu B, Broderick B. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading [J]. Engineering Structures, 2005, 27(8): 1209-1219.
[17].  Germanischer Lloyd. Guideline for the Certification of Wind Turbines: Part 5: Strength Analyses [S]. Hamburg, Germany, 2003.
[18].  中国机械工业联合会. 风力发电组 塔架(GB/T 19072-2010)[S].北京:中国机械工业出版社, 2010.
China Machinery Industry Federation. Tower of wind turbine generator system (GB/T 19072-2010) [S]. Beijing: China Machine Press, 2010.
[19].  刘展, 贾利民,庞宇. 基于 TMD 的风力发电机组降载设计方法[J].振动与冲击, 2017, 36(3): 196-201.
LIU Zhan, JIA Li-min, PAN Yu. Design method of wind turbine load shedding based on TMD[J]. Journal of Vibration and Shock, 2017, 36(3): 196-201.

PDF(3280 KB)

Accesses

Citation

Detail

段落导航
相关文章

/