基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取

刘兴教,赵学智,李伟光,陈辉

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 157-164.

PDF(1249 KB)
PDF(1249 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 157-164.
论文

基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取

  • 刘兴教,赵学智,李伟光,陈辉
作者信息 +

EEMD-MCKD fault feature extraction method for flexible thin-wall bearing based on kurtosis principle

  • LIU Xingjiao, ZHAO Xuezhi, LI Weiguang, CHEN Hui
Author information +
文章历史 +

摘要

谐波减速器用柔性薄壁轴承运行过程中因内圈长、短轴交替产生周期性冲击成分。当柔性薄壁轴承发生故障后,这种正常的周期性冲击成分和因故障引起的冲击叠加在一起,使得其故障特征提取难度很大。针对这一特点,提出基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取方法。首先使用集成经验模态分解算法(EEMD)对信号进行预处理,选用峭度原则滤除信号中的无关分量和冗余分量,重构筛选后的固有模态分量(IMF)得到EEMD重构信号;在此基础上,针对柔性薄壁轴承振动信号特点进行MCKD算法进行参数优化,利用参数优化后的MCKD对EEMD重构信号进行提取。运用此方法对实测柔性薄壁轴承外圈故障振动信号进行特征提取,结果表明,准确提取到了清晰的故障特征频率。将提取效果与单一EEMD算法和MCKD算法进行对比分析,EEMD-MCKD算法提取效果更佳。

Abstract

During operation of a flexible thin-walled bearing used in harmonic reducer, periodic impact components are produced due to long and short shafts of inner ring alternating. When a fault occurs in the bearing, normal periodic impact components and impact caused by fault are superimposed together to make the fault feature extraction difficult. Here, aiming at this characteristic, the EEMD-MCKD fault feature extraction method based on kurtosis principle for flexible thin-walled bearing was proposed. Firstly, the fault signal was pre-processed with the ensemble empirical mode decomposition (EEMD) algorithm. Irrelevant and redundant components in signal was filtered with the kurtosis principle, and the selected intrinsic mode function (IMFs) were used to obtain EEMD reconstructed signal. Then according to characteristics of flexible thin-wall bearing’s vibration signal, the parameter optimization was done for the maximum correlated kurtosis decomposition (MCKD). Finally, the parameter optimized MCKD was used to do fault feature extraction from the EEMD reconstructed signal. The proposed method was used to extract fault features in actually measured vibration signals of flexible thin-wall bearing’s outer ring. Results showed that clear fault feature frequency was extracted in vibration signal of outer ring of flexible thin-wall bearing with the proposed method; compared with the single EEMD and MCKD algorithms, the EEMD-MCKD algorithm has a better fault feature extraction effect.

关键词

柔性薄壁轴承 / 峭度原则 / 集成经验模态分解 / 相关峭度 / 故障特征提取

Key words

flexible thin-wall bearing / kurtosis principle / ensemble empirical mode decomposition (EEMD) / correlated kurtosis / fault feature extraction

引用本文

导出引用
刘兴教,赵学智,李伟光,陈辉. 基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取[J]. 振动与冲击, 2021, 40(1): 157-164
LIU Xingjiao, ZHAO Xuezhi, LI Weiguang, CHEN Hui. EEMD-MCKD fault feature extraction method for flexible thin-wall bearing based on kurtosis principle[J]. Journal of Vibration and Shock, 2021, 40(1): 157-164

参考文献

[1] Dennis León,Nelson Arzola,Andrés Tovar. Statistical analysis of the influence of tooth geometry in the performance of a harmonic drive[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(2).
[2] 付志华. 谐波减速器动力学仿真分析[D]. 厦门:厦门大学, 2017.
[3] 李振. 柔性薄壁轴承振动信号分析与诊断方法研究[D].广州:华南理工大学, 2019.
[4] Wiggins R A. Minimum entropy deconvolution [J]. Geophysical Prospecting for Petrole, 1980, 16(1):21-35.S.
[5] 黄兴, 何文杰, 符远翔. 工业机器人精密减速器综述[J]. 机床与液压, 2015, 43(13): 1-6.
HUANG Xing, HE Wenjie, FU yuanxiang. Summary of Precision Speed Reducer of Industrial Robots [J]. Machine Tool & Hydraulics, 2015, 43(13): 1-6.
[6] Huang N E, Shen Z, Long S R, et al. A new method for nonlinear and non-stationary time series analysis: Empirical mode decomposition and Hilbert spectral analysis [C]. Proc. of SPIE, 2000, 4056: 197-209.
[7] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903 - 995.
[8] 王志坚,韩振南,刘邱祖等.基于MED-EEMD的滚动轴承微弱故障特征提取[J].农业工程学报, 2014, 30(23): 70-78.
WANG Zhijian, HAN Zhennan, LIU Qiuzu, et al. Weak fault diagnosis for rolling element bearing based on MED-EEMD [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 70-78.
[9] 沈长青,谢伟达,朱忠奎,等.基于EEMD和改进的形态滤波方法的轴承故障诊断研究[J].振动与冲击,2013,32(02):39-43+66.
SHEN Changqing, XIE Weida, ZHU Zhongkui, et al. Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method [J]. Journal of Vibration and Shock, 2013,32(02):39-43+66.
[10] McDonald G L, Zhao Q, Zuo M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
[11] 陈海周,王家序,汤宝平,等.基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J].振动与冲击,2017,36(09):45-50+73.
CHEN Haizhou, WANG Jiaxu, TANG Baoping, et al. Helicopter rolling bearing hybrid faults diagnosis using minimum entropy deconvolution and Teager energy operator [J]. Journal of Vibration and Shock, 2017, 36(09): 45-50+73.
[12] 何玉灵,王珂,仲昊,等. 基于最大相关峭度解卷积算法的发电机特征振动信号增强检测[J]. 华北电力大学学报(自然科学版), 2017, 44(03): 67-73.
HE Yuling, WANG Ke, ZHONG Hao. et al. Enhanced Detection of Generator’s Characteristic Vibration Signal Based on Maximum Correlated Kurtosis Deconvolution [J]. Journal of North China Electric Power University, 2017, 44(03): 67-73.
[13] 唐道龙, 李宏坤, 王朝阁, 等. 基于参数优化MCKD的行星齿轮箱微弱故障诊断研究[J]. 机电工程, 2018, 35(08): 779-785.
TANG Daolong, LI Hongkun, WANG Chaoge, et al. Fault diagnosis of planet gear box based on parameter optimization's MCKD [J]. Journal of Mechanical & Electrical Engineering, 2018, 35(08): 779-785.
[14] 唐贵基,王晓龙.最大相关峭度解卷积结合1.5维谱的滚动轴承早期故障特征提取方法[J].振动与冲击,2015,34(12):79-84.
TANG Guiji, WANG Xiaolong. Feature extraction for rolling bearing incipient fault based on maximum correlated kurtosis deconvolution and 1.5 dimension spectrum [J]. Journal of Vibration and Shock, 2015,34(12):79-84.
[15] Wiggins R A. Minimum entropy deconvolution[J]. Geophysical Prospecting for Petrole, 1980,16(1): 21-35.
[16] 李振, 李伟光, 赵果, 等. 一种柔性精密薄壁轴承故障诊断寿命试验机[P].广东: CN206420654U, 2017-08-18.

PDF(1249 KB)

431

Accesses

0

Citation

Detail

段落导航
相关文章

/