经典边界条件粘弹性Pasternak地基上Bernoulli-Euler梁横向自振特性分析

付艳艳,余云燕

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 173-182.

PDF(1343 KB)
PDF(1343 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 173-182.
论文

经典边界条件粘弹性Pasternak地基上Bernoulli-Euler梁横向自振特性分析

  • 付艳艳,余云燕
作者信息 +

Transverse free vibration characteristics of Bernoulli-Euler beam on viscoelastic Pasternak foundation under classical boundary conditions

  • FU Yanyan, YU Yunyan
Author information +
文章历史 +

摘要

自振特性在结构的动力分析中具有重要的意义。将回传射线矩阵法(MRRM)推广到地基梁自振特性的研究中,通过节点力平衡和位移协调方程及对偶局部坐标系下单元相位关系,建立两端简支、两端自由、两端固支、简支-自由、简支-固支及固支-自由这六种边界条件下粘弹性Pasternak地基上的Bernoulli-Euler梁的回传射线矩阵,进而得到其频率方程。根据单一局部坐标系下的边界条件,推导出模态函数解析表达式,进一步根据正交归一化条件求解模态函数表达式中的未知参数。通过具体算例验证了回传射线矩阵法求解的正确性,并对不同边界条件下的自振频率、衰减系数及模态函数进行了分析。为粘弹性地基梁的振动特性研究提供理论基础。

Abstract

Free vibration characteristics play an important role in structural dynamic analysis. Here, the method of reverberation ray matrix (MRRM) was proposed to study free vibration characteristics of foundation beams. Through node force balance equation, displacement compatibility equation and element phase relation in dual local coordinate system, reverberation-ray matrices of a Bernoulli-Euler beam on viscoelastic Pasternak foundation were established under classical boundary conditions including two-end simply supported, two-end free, two-end fixed, simply supported-free, simply supported-fixed and fixed-free, and then the beam’s frequency equations under the 6 types boundary conditions were deduced. According to boundary conditions in a single local coordinate system, analytical expressions for the beam’s modal functions were derived. Furthermore, unknown parameters in modal function expressions were solved according to the orthogonal normalization condition. Some examples were used to verify the correctness of the MRRM. Finally, natural frequencies, attenuation coefficients and modal functions of the beam under different boundary conditions were analyzed. The study results provided a theoretical basis for studying free vibration characteristics of beams on viscoelastic foundation.

关键词

粘弹性Pasternak地基 / Bernoulli-Euler梁 / 横向自振特性 / 回传射线矩阵法

Key words

viscoelastic Pasternak foundation / Bernoulli-Euler beam / transverse free vibration characteristics / method of reverberation ray matrix (MRRM)

引用本文

导出引用
付艳艳,余云燕. 经典边界条件粘弹性Pasternak地基上Bernoulli-Euler梁横向自振特性分析[J]. 振动与冲击, 2021, 40(1): 173-182
FU Yanyan, YU Yunyan. Transverse free vibration characteristics of Bernoulli-Euler beam on viscoelastic Pasternak foundation under classical boundary conditions[J]. Journal of Vibration and Shock, 2021, 40(1): 173-182

参考文献

[1]白海峰. 基于连续弹性地基梁的轨枕静力响应研究[J]. 铁道工程学报, 2007(05): 22-27.
BAI Hai-feng. Research on the static response of tie on continuous elastic grade beam [J]. Journal of Railway Engineering Society, 2007(05): 22-27.
[2]李韶华, 杨绍普. 重型汽车与路面的耦合作用研究[J]. 振动与冲击, 2009, 28(06): 155-158+202.
  LI Shao-hua, YANG Shao-pu. Dynamical interaction between heavy vehicle and road pavement [J]. Journal of Vibration and Shock, 2009, 28(06): 155-158+202.
[3]李皓玉, 杨绍普, 李韶华. 车、路的相互作用下沥青路面动力学特性分析[J]. 振动与冲击, 2009, 28(04): 86-89+102+205.
LI Hao-yu, YANG Shao-pu, LI Shao-hua. Dynamical analysis of an asphalt pavement due to vehicle-road interaction [J]. Journal of Vibration and Shock, 2009, 28(04): 86-89+102+205. 
[4]戚丰武, 王健. 连续弹性地基梁在隧道施工中的运用技术[J]. 铁道工程学报, 2001(04): 93-95.
  QI Feng-wu, WANG Jian. Applying technique of continuous elastic foundation ground beam in construction of tunnel [J]. Journal of Railway Engineering Society, 2001(04): 93-95.
[5]Ge H H, Xu J Y. A Numerical Method for Cavity Identification in Beams on an Elastic Foundation [J]. Tsinghua Science and Technology, 2007(05): 540-545.
[6]彭丽, 陈春霞. 黏弹性Winkler地基梁的振动特性分析[J]. 上海师范大学学报(自然科学版), 2012, 41(06): 586-589.
  PENG Li, CHEN Chun-xia. Analysis of vibration of beams on viscoelastic Winkler foundation [J]. Journal of Shanghai Normal University (Natural Sciences), 2012, 41(06): 586-589.
[7]马建军, 聂梦强, 高笑娟, 秦紫果.考虑土体质量的Winkler地基梁非线性自由振动分析[J]. 工程力学, 2018, 35(S1): 150-155.
  MA Jian-jun, NIE Meng-qiang, GAO Xiao-juan, et al. Nonlinear free vibration of a beam on Winkler foundation with a consideration of soil mass effect [J]. Engineering Mechanics, 2018, 35(S1): 150-155.
[8]马建军, 秦紫果, 刘丰军, 高笑娟. 考虑有限深度土体运动的Winkler地基梁自由振动分析[J]. 振动与冲击, 2019, 38(06): 62-66+99.
MA Jian-jun, QIN Zi-guo, LIU Feng-jun, et al. Free vibration of beams on Winkler foundation with the consideration of finite-depth soil motion [J]. Journal of Vibration and Shock, 2019, 38(06): 62-66+99.
[9]彭丽, 丁虎, 陈立群. 黏弹性三参数地基梁横向自由振动[J]. 振动与冲击, 2014, 33(01): 101-105.
PENG Li, DING Hu, CHEN Li-qun. Transverse free vibration of a beam resting on a three-parameter viscoelastic foundation [J]. Journal of Vibration and Shock, 2014, 33(01): 101-105.
[10]彭丽, 丁虎, 陈立群. 黏弹性Pasternak地基梁振动的复模态分析[J]. 振动与冲击, 2013, 32(02): 143-146+181.
PENG Li, DING Hu, CHEN Li-qun. Complex modal analysis for vibrations of a beam on a viscoelastic Pasternak foundation [J]. Journal of Vibration and Shock, 2013, 32(02): 143-146+181.
[11]丁虎, 陈立群. Pasternak地基梁受迫振动行波解[J]. 中国科学: 物理学 力学 天文学, 2013, 43(04): 564-571.
DING Hu, CHEN Li-qun. Forced vibration of beam on Pasternak foundation: A wave
evolution analysis [J]. Scientia Sinice: Physica, Mechanica & Astronomica, 2013, 43(04): 564-571.
[12] Wang T M, Stephens J E. Natural frequencies of Timoshenko beam on Pasternak foundation [J]. Journal of Sound and Vibration, 1977, 51(2): 149-155.
[13]彭丽, 丁虎, 陈立群. 黏弹性三参数地基上Timoshenko梁横向自由振动[J]. 噪声与振动控制, 2013, 33(05): 107-110+188.
   PENG Li, DING Hu, CHEN Li-qun. Transverse Free Vibration of a Timoshenko Beam Rested on Transverse Free Vibration of a Timoshenko Beam Rested on Three-parameter Viscoelastic Foundation [J]. Noise and Vibration Control, 2013, 33(05): 107-110+188.
[14] Zhang J, Ge R, Zhang L. Transverse free vibration analysis of a tapered Timoshenko beam on Visco-Pasternak foundations using the interpolating matrix method [J]. Earthquake Engineering and Engineering Vibration, 2019, 18(03): 567-578.
[15]陈进浩, 余云燕. 框架结构瞬态波动响应及自振频率的回传射线矩阵法分析[J]. 振动与冲击, 2016, 35(10): 83-90.
CHEN Jin-hao, YU Yun-yan. Analysis of the transient response and natural frequency of a frame by the reverberation-ray matrix method [J]. Journal of Vibration and Shock, 2016, 35(10): 83-90.
[16]许兰兰, 余云燕. 门式框架结构的瞬态波动响应和自振特性研究[J]. 振动与冲击, 2017, 36(17): 170-178.
XU Lan-lan, YU Yun-yan. Transient response and natural vibration characteristics of portal frames [J]. Journal of Vibration and Shock, 2017, 36(17): 170-178.
[17]柳伟, 余云燕. 桩顶固定且部分桩体埋入黏弹性地基中时桩的自振特性分析[J]. 噪声与振动控制, 2018, 38(02): 127-132.
   LIU Wei, YU Yun-yan. Analysis of vibration characteristics of piles with top fixed and part embedded in a viscoelastic foundation [J]. Noise and Vibration Control, 2018, 38(02): 127-132.
[18]余云燕, 陈进浩, 刘家骥. 土体阻尼对全(部分)埋入单桩基础自振特性的影响研究[J]. 振动工程学报, 2018, 31(06): 1076-1084.
   YU Yun-yan, CHEN Jin-hao, LIU Jia-ji. The influence of soil damping on the free vibration characteristics of pile all or partial embedded in soil [J]. Journal of Vibration Engineering, 2018, 31(06): 1076-1084.
[19]付艳艳, 余云燕. 全埋入单桩基础纵向振动模态正交性研究[J]. 兰州交通大学学报, 2017, 36(03): 6-11.
   FU Yan-yan, YU Yun-yan. The orthogonality of modes of single fully embedded pile in longitudinal vibration [J]. Journal of Lanzhou Jiaotong University, 2017, 36(03): 6-11.
[20] 彭丽. 黏弹性基础梁横向振动复模态分析[D]. 上海: 上海大学, 2015.
   PENG Li. Complex mode analysis for transverse vibration of beams on viscoelastic foundation [D]. Shanghai: Shanghai University, 2015.

PDF(1343 KB)

Accesses

Citation

Detail

段落导航
相关文章

/