基于BP神经网络的导线脱冰跳跃高度预测模型

文楠1,严波1,林翔1,黄桂灶1,吕中宾2,张博2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 199-204.

PDF(792 KB)
PDF(792 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 199-204.
论文

基于BP神经网络的导线脱冰跳跃高度预测模型

  • 文楠1,严波1,林翔1,黄桂灶1,吕中宾2,张博2
作者信息 +

Prediction model of wire de-icing jump height based on BP neural network BP neural network

  • WEN Nan1, YAN Bo1, LIN Xiang1, HUANG Guizao1, L Zhongbin2, ZHANG Bo2
Author information +
文章历史 +

摘要

冰区导线脱冰振动会引起绝缘间隙减小,严重时甚至导致闪络和跳闸等电气事故。首先利用数值方法模拟得到各种参数条件下导线的脱冰动力响应,获得导线的最大脱冰跳跃高度。进而基于数值模拟结果和BP神经网络构建导线脱冰跳跃高度预测模型,将线路的导线分裂数、导线型号、档距、高差等结构参数以及初始应力、覆冰厚度和脱冰率等载荷参数作为输入,最大冰跳高度作为输出,通过机器学习,并采用评价指标评估其准确性,对模型进行优化。该模型可以方便快捷地确定导线的最大脱冰跳跃高度,为冰区输电线路绝缘间隙设计提供参考。

Abstract

De-icing vibration of wire in ice area can reduce insulation gap, even cause flashover, trip and other electrical accidents. The maximum de-icing jump heights of wire under conditions of different parameters were numerically simulated, and numerical simulation results and a BP neural network were used to build a prediction model for wire de-icing jump height. Taking structural parameters, such as, number of wire splits, wire type, wire span, and height difference, and load parameters, such as, initial stress, icing thickness and de-icing rate as the input and the maximum wire de-icing jump height as the output, the model was optimized through machine learning and the evaluation index was used to assess the model’s accuracy. It was shown that the model can determine the maximum wire de-icing jump height conveniently and quickly; it can provide a reference for insulation gap design of transmission line in ice area.

关键词

导线 / 数值模拟 / 脱冰跳跃高度预测 / BP神经网络 / 机器学习

Key words

wire / numerical simulation / de-icing jump height prediction / BP neural network / machine learning

引用本文

导出引用
文楠1,严波1,林翔1,黄桂灶1,吕中宾2,张博2. 基于BP神经网络的导线脱冰跳跃高度预测模型[J]. 振动与冲击, 2021, 40(1): 199-204
WEN Nan1, YAN Bo1, LIN Xiang1, HUANG Guizao1, L Zhongbin2, ZHANG Bo2. Prediction model of wire de-icing jump height based on BP neural network BP neural network[J]. Journal of Vibration and Shock, 2021, 40(1): 199-204

参考文献

[1] 苑吉河,蒋兴良,易辉,等. 输电线路导线覆冰的国内外研究现状[J]. 高电压技术, 2004, 30(1): 6-9.
YUAN Ji-he, JIANG Xing-liang, YI Hui, et al. The Present Study on Conductor Icing of Transmission Lines[J]. High Voltage Engineering, 2004,30(1): 6-9.
[2] Morgan V T, Swift D A. Jump height of overhead-line conductors after the sudden release of ice loads[J]. Electrical Engineers, Proceedings IEEE, 1964, 111(10): 1736 - 1746.
[3] Jamaleddine A, Mcclure G, Rousselet J, et al. Simulation of ice-shedding on electrical transmission lines using ADINA[J]. Computers & Structures, 1993, 47(4-5):523-536.
[4] Jamaleddine A. Effects statiques et dynamigues du Delestage de la glace sur les lignes aeriennes de transport d energie electrique[D]. Universite de Montreal, Quebec, Canada, 1994.
[5] Dyke P V, Havard D, Andrè Laneville. Effect of Ice and Snow on the Dynamics of Transmission Line Conductors[M]. Atmospheric Icing of Power Networks. Springer Netherlands, 2008.
[6] Oertli H. Oscillations de cables electriques aeriens apres la chute de surcharges [J].Bull Assoc Suisse E-lect, 1950, 41: 501.
[7] Wu C, Yan B, Zhang L, et al. A method to calculate jump height of iced transmission lines after ice-shedding[J]. Cold Regions Science & Technology, 2016, 125:40-47.
[8] Kollar L E, Farzaneh M. Vibration of bundled conductors following ice shedding[J]. IEEE Trans. Power Delivery, 2008, 23(2):1097-1104.
[9] Yan B, Chen K, Guo Y, et al. Numerical Simulation Study on Jump Height of Iced Transmission Lines After Ice Shedding[J]. IEEE Transactions on Power Delivery, 2012, 28(1):216-225.
[10] 张殿生. 电力工程高压送电线路设计手册[M]. 中国电力出版社, 2003.
ZHANG Dian-sheng. Design Manual of High Voltage Transmission Lines for Electric Engineering [M]. 2nded. Beijing: China Electric Power Press, 2003.
[11] Huang G, Yan B, Wen N, et al. Study on jump height of transmission lines after ice-shedding by reduced-scale modeling test[J]. Cold Region Science and Technology, 2019, 165: 1-10.
[12] Tang Z, Zhu Y, Nie Y, Guo S, et al. Data-driven train set crash dynamics simulation[J].Vehicle System Dynamics, 2017, 55(2): 149-167.
[13] Xu Y,You T,Du C. An integrated micromechanical model and BP neural network for predicting elastic modulus o 3-D multi-phase and multi-layer braided composite[J]. Composite Structures, 2015, 122:308-315.
[14] 淡淑恒,吴娜,李昊东,等.基于有限元和神经网络方法对220kV盆式绝缘子均压环结构优化设计[J].高压电器, 2018, 54(3):79-85.
DAN Shu-heng, WU Nan, LI Hao-dong, et al. Optimization Design of Grading Ring for 220 kV Basin-type Insulator Based on Finite Element Method and Neural Network Method[J]. High Voltage Apparatus, 2018, 54(3):79-85.
[15]Wang J, Xiong XF, Zhou N, Li Z, et al. Early warning method for transmission line galloping based on SVM and AdaBoost bi-level classifiers[J]. IET Generation, Transmission & Distribution, 2016, 10(14): 3499-3507.
[16]廖峥,熊小伏,李新等.基于BP神经网络的输电线路舞动预警方法[J].电力系统保护与控制, 2017, 45(19):154-161.
LIAO Zheng, XIONG Xiao-fu, LI Xing, et al. An early warning method of transmission line galloping based on BP neural network[J]. Power System Protection and Control, 2017, 45(19):154-161.
[17]Roshan F M., McClure G. Numerical modeling of the dynamic response of ice-shedding on electric transmission lines [J]. Atmospheric Research, 1998, 46:1-11.
[18] Hibbitt, Karlsson & Sorensen, Inc. ABAQUS User Subroutines Reference Manual, volumes, version 6.4[M/OL], 2003.
[19] 周志华. 机器学习[M]. 清华大学出版社, 2016.

PDF(792 KB)

431

Accesses

0

Citation

Detail

段落导航
相关文章

/