在防护和采矿等工程中,洞室围岩常会受到不同形式的冲击载荷作用,从而诱发垮塌和冲击地压等严重灾害。本文继续完善自主开发的拉格朗日元与变形体离散元耦合的连续-非连续方法,同时引入Ⅰ型和Ⅱ型断裂能,在适于模拟拉裂的基础上,也适于模拟剪裂,从而可对有关灾害的机理分析和预防产生积极意义。本文利用该方法开展了周期半正弦波冲击下洞室围岩的变形-开裂-垮塌过程的数值模拟研究,着重阐明了应力波反射和叠加导致洞室顶板开裂机理,解释了洞室两帮拉、剪裂相伴现象的原因,探讨了周期冲击载荷幅值的影响规律。研究发现:1)当由模型的上端面传入的第1个压应力波抵达洞室顶板表面时,压应力波分化成的中间部分发生反射,反射的拉应力波单独自己或与第1和第2个压应力波之间的受拉区叠加导致顶板拉裂;2)洞室顶板以拉裂为主;洞室两帮以剪裂为主,并形成V形坑。洞室顶板的拉裂区对于后继应力波有吸能作用;3)在洞室两帮发生剪裂后形成多重V形坑,坑内应力处于低值,而且,压应力波波后会存在一个挤压程度不强烈区甚至受拉区,从而导致坑内发生拉裂,造成拉、剪裂相伴现象;4)随着冲击载荷幅值的减小,拉、剪裂缝的数目和分布范围减小,V形坑最大深度减小,洞室围岩更易平衡。
Abstract
In protection and mining engineering, cavern surrounding rock is often subjected to different forms of impact load to cause serious disasters, such as, collapses and rockbursts.Here,the continuous-discontinuous method developed by ourselves for Lagrange element-deformation body discrete element coupling was continuously improved. At the same time, Type-I and Type-II fracture energy were introduced, on the basis of simulating tensile fracture, they were also suitable for simulating shear fracture, so they were of positive significance to the mechanism analysis and prevention of related disasters. The continuous-discontinuous method was used to perform the numerical simulation of deformation-cracking-collapse process of cavern surrounding rock under periodic half sine wave impact. The mechanism of cavern roof cracking caused by reflection and superposition of stress wave was emphatically studied. The cause of the phenomenon of tensile and shear cracking on both sides of cavern was explained, and the influence law of periodic impact load amplitude was explored.Results showed that (1) when the first compression stress wave reaches cavern roof surface, the middle part of the compression stress wave is reflected, and the reflected tensile stress wave alone or superimposed with the tensile zone between the first and second compression stress waves leads to roof cracking; (2) cavern roof is mainly subjected to tensile cracking, and two sides of cavern are mainly subjected
to shear cracking to form V-shaped pits, the tensile cracking zone of cavern roof can absorb energy of subsequent stress wave; (3) multiple V-shaped pits are formed after shear cracking on both sides of cavern, and the stress in pit is low,moreover, there exists a weakly squeezed zone or even a tensile zone behind compression stress wave to cause tensile cracking in pit and phenomenon of tensile cracking and shear cracking accompanying; (4) with decrease in impact load amplitude, the number and distribution range of tensile and shear cracks decrease, the maximum depth of V-shaped pit decreases, and cavern surrounding rock is easier toreach an equilibrium.
关键词
冲击载荷 /
洞室围岩 /
应力波 /
反射 /
叠加 /
拉裂 /
剪裂 /
连续-非连续方法
{{custom_keyword}} /
Key words
impact load /
cavern surrounding rock /
stress wave /
reflection /
superposition /
tensile cracking /
shear cracking /
continuous-discontinuous method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gong F Q, Luo Y, Li X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 413-427.
[2] He, M C, Miao, J L, Li, D J, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (5): 865-876.
[3] 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21): 118-124.
XIE Bei-jing, WANG Xin-yan, LU Ping-yang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of Vibration and Shock, 2017, 36(21): 118-124.
[4] 高长辉, 马芹永, 马冬冬. 主动围压作用下水泥灰质黏土SHPB试验与分析[J]. 振动与冲击, 2018, 37(14): 160-167.
GAO Chang-hui, MA Qin-yong, MA Dong-dong. SHPB test and analysis on cemented silty clay under confining pressure conditions[J]. Journal of Vibration and Shock, 2018, 37(14): 160-167.
[5] 李夕兵, 宫凤强, 王少锋, 等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019, 38(4): 708-723.
LI Xi-bing, GONG Feng-qiang, WANG Shao-feng, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708-723.
[6] Du K, Tao M, Li X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453.
[7] Su G S, Jiang J Q, Zhai S B, et al. Influence of tunnel axis stress on strainburst: an experimental study[J]. Rock Mechanics and Rock Engineering, 2017, 50: 1551-1567.
[8] Su G S, Zhai S B, Jiang J Q, et al. Influence of radial stress gradient on strainbursts: an experimental study[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659-2676.
[9] 李夕兵, 廖九波, 赵国彦, 等. 动力扰动下高应力巷道围岩动态响应规律[J]. 科技导报, 2012, 30(22): 48-54.
LI Xi-bing, LIAO Jiu-bo, ZHAO Guo-yan, et al. Dynamic response of surrounding rock in highly-stressed. tunnel under dynamic Disturbance[J]. Articles, 2012, 30(22): 48-54.
[10] 陈建君, 马鹏, 余伊河, 等. 动载方向对巷道冲击影响的数值模拟研究[J]. 煤, 2013, 22(11): 3-5, 49.
CHEN Jian-jun, MA Peng, YU Yi-he, et al. Numerical simulation study on the effect of roadway burst induced by dynamic disturbance at different directions[J]. Coal, 2013, 22(11): 3-5, 49.
[11] 陆家佑, 王昌明. 根据岩爆反分析岩体应力研究[J]. 长江科学院院报, 1994(3): 27-30.
LU Jia-you, WANG Chang-ming. Study on back analysis for stress of rock mass from information of rock bursts[J]. Journal of Yangtze River Scientific Research Institute, 1994(3): 27-30.
[12] 王学滨, 伍小林, 潘一山. 圆形巷道围岩层裂或板裂化的等效连续介质模型及侧压系数的影响[J]. 岩土力学, 2012, 33(8): 2395-2402.
WANG Xue-bin, WU Xiao-lin, PAN Yi-shan. An equivalent continuum model for exfoliation or Blabbing phenomenon of surrounding rock of circular tunnel and effects of lateral pressure coefficients[J]. Rock and Soil Mechanics, 2012, 33(8): 2395-2402.
[13] VARDOULAKIS I, SULEM J, GUENOT A. Borehole instabilities as bifurcation phenomena[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1988, 25(3): 159-170.
[14] MITELMAN A, ELMO D. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 565-573.
[15] MUNJIZA A. The combined finite-discrete element method[M]. London: John Wiley and Sons, 2004.
[16] 郭翔, 王学滨, 白雪元, 等. 加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J]. 岩土力学, 2017, 38(1): 214-220.
GUO Xiang, WANG Xue-bin, BAI Xue-yuan, et al. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method[J]. Rock and Soil Mechanics, 2017, 38(1): 214-220.
[17] 王学滨, 郭翔, 芦伟男, 等. 三点弯梁开裂过程及尺寸效应的连续-非连续方法模拟[J]. 地下空间与工程学报, 2018, 14(6): 1587-1593.
WANG Xue-bin, GUO Xiang, LU Wei-nan, et al. Modeling of Cracking Processes and Size Effects of Three-point Bending Beams Using a Continuum-discontinuum Method[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(6): 1587-1593.
[18] 王学滨. 拉格朗日元方法、变形体离散元方法及虚拟裂纹模型耦合的连续-非连续介质力学分析方法研究[R]. 北京: 中国矿业大学(北京), 2015.
[19] 张时伟, 翟新献. 顶板断裂产生的冲击载荷对深井巷道围岩变形的数值计算研究[J]. 煤炭技术, 2015, 34(1): 32-34.
ZHANG Shi-wei, ZHAI Xin-xian. Study on Numerical Calculation for Surrounding Rock Deformation of Roadway in Deep Shaft Caused by Impact Load of Roof Fracture[J]. Coal Technology, 2015, 34(1): 32-34.
[20] 董锁堂. 动载作用下巷道围岩变形试验研究[D]. 邯郸: 河北工程大学, 2016.
[21] 韩晓亮. 爆破动载作用下出矿巷道稳定性研究[D]. 赣州: 江西理工大学, 2016.
[22] 彭地. 地下工程围岩及结构特性分析[D], 成都: 西南交通大学, 2009.
[23] 陈凯, 唐治, 崔乃鑫, 等. 矩形巷道围岩应力解析解[J]. 安全与环境学报, 2015, 15(3): 124-128.
CHEN Kai, TANG Zhi, CUI Nai-xin, et al. Analytical solution of rectangular roadway surrounding rock stress[J]. Journal of Safety and Environment, 2015, 15(3): 124-128.
[24] 潘一山. 煤矿冲击地压[M]. 北京: 科学出版社. 2018.
[25] 孙渤. 兖州矿区济三煤矿冲击矿压预防技术研究[J]. 山东煤炭科技, 2012, (1): 179-180.
SUN Bo. Study on prevention technology of rock burst in jisan coal mine yanzhou mining area[J]. Shandong Coal Science and Technology, 2012, (1): 179-180.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}