翼型凹变对风轮旋转噪声影响特性分析

吕文春1,2,汪建文1,3,4,段亚范1,马剑龙1,3,4,孟克其劳1,3,4,陈金霞2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 45-51.

PDF(2054 KB)
PDF(2054 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 45-51.
论文

翼型凹变对风轮旋转噪声影响特性分析

  • 吕文春1,2,汪建文1,3,4,段亚范1,马剑龙1,3,4,孟克其劳1,3,4,陈金霞2
作者信息 +

Effects of airfoil concave change on rotating noise of wind turbine

  • L Wenchun1,2, WANG Jianwen1,3,4, DUAN Yafan1, MA Jianlong1,3,4,MENGKE Qilao1,3,4, CHEN Jingxia2
Author information +
文章历史 +

摘要

针对某分布式小型风力机叶片,为了探究翼型凹变后对风轮旋转噪声的影响效果,本文利用60通道声阵列系统对凹变叶片和原叶片风轮进行旋转噪声采集,并通过探究翼型凹变对风轮结构动态响应的影响,解析了翼型凹变造成风轮旋转噪声降低的原因。结果表明,翼型凹变可以有效地提高叶片的固有频率和阻尼比,提升了叶片的刚度,有效地减弱了叶片对周围流体的涨缩作用,从而降低了风轮的旋转噪声;另外发现,翼型凹变对旋转噪声不同倍频谐波声压级影响的敏感性不同,即随着倍频次数的增加而逐渐增强。相关研究成果为降低风轮旋转噪声提供了新的思路及解决方案。

Abstract

For a distributed small wind turbine blade, in order to explore effects of airfoil concave change on rotating noise of wind turbine, a 60-channel acoustic array system was used to collect  rotating noise of concave variable blade and original blade wind wheels, and through exploring effects of airfoil concave change on dynamic response of wind wheel structure, the reason of wind wheel’s rotating noise reduction caused by airfoil concave change was analyzed. Results showed that airfoil concave change can effectively improve natural frequency and damping ratio of blade, enhance blade stiffness, effectively reduce blade’s expansion and contraction action on the surrounding fluid, and thus reduce rotating noise of wind turbine; the sensitivity of airfoil concave change to the influence of different frequency-doubling harmonic sound pressure levels of rotating noise is different, the sensitivity increases with increase in frequency-doubling times; the related study results provide new idea and solution scheme for reducing rotating noise of wind turbine.

关键词

翼型凹变 / 刚度 / 旋转噪声 / 声压级

Key words

airfoil concave change / stiffness / rotating noise / sound pressure level

引用本文

导出引用
吕文春1,2,汪建文1,3,4,段亚范1,马剑龙1,3,4,孟克其劳1,3,4,陈金霞2. 翼型凹变对风轮旋转噪声影响特性分析[J]. 振动与冲击, 2021, 40(1): 45-51
L Wenchun1,2, WANG Jianwen1,3,4, DUAN Yafan1, MA Jianlong1,3,4,. Effects of airfoil concave change on rotating noise of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(1): 45-51

参考文献

[1] 李晓东,许影博,江旻.风力机气动噪声研究现状与发展趋势[J].应用数学和力学,2013,34(10):1083-1090.
Li X D, Xu Y B, Jiang M. Research Status and Trend of Wind Turbine Aerodynamic Noise[J]. Applied mathematics and mechanics,2013,34(10):1083- 1090.
[2] Kurelek J W, Kotsonis M, et al. Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of fluid mechanics, 2018, 853:1-36.
[3] Chamorro L P, Porteagel F. Effects of Thermal Stability and Incoming Boundry-Layer Flow Characteristics on Wind Turbine Wakes: A Wind-Tunnel Study[J]. Boundary-Layer Meteorology, 2010, 136(3): 515-533.
[4] Li Q , Kamada Y , Maeda T , et al. Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows[J]. Energy, 2016, 111:57-67.
[5] Yarusevych S, Sullivan P E, Kawall J G, et al. Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers[J]. Physics of Fluids, 2006, 18(4):1-11.
[6] 魏自言.基于LBM-LES方法多孔翼型气动噪声数值分析及降噪机理研究[D].南昌航空大学, 2018.
Wei Z Y. Simulation of Porous Airfoils Acoustics Based on LBM-LES Method and the Noise Reduction Mechanism[D]. Nanchang Hangkong University,2018.
[7] 王松岭, 李曙光, 刘梅等. 带脊状结构的NACA0018翼型气动噪声特性[J]. 科学技术与工程, 2019(07):171-176.
Wang S L, Li S G, Liu M, et al. Aerodynamic noise characteristics of naca0018 airfoil with ridge structure[J]. Science Thnology and Engineering, 2019(07):171-176.
[8] Jelínek T. Experimental Investigation of the Boundary Layer Transition on a Laminar Airfoil Using Infrared Thermography[C]//EPJ Web of Conferences. EDP Sciences, 2018, 180: 02040.
[9] Arce León, Carlos, Roberto, et al. Effect of trailing edge serration-flow misalignment on airfoil noise emissions[J]. Journal of Sound and Vibration, 2017, 405:19-33.
[10] 苏彩虹.发动机外罩波纹形尾缘降噪机理初探[J].空气动力学学报,2018,36(03): 410-416.
Su C H, Study on noise reduction mechanism of corrugated trailing edge of engine cover[J]. Journal of aerodynamics, 2018,36(03): 410-416.
[11] 詹枞州,叶舟,田鹏等, 基于DES模型翼型尾缘气动噪声数值研究[J]. 热能动力工程, 2019, 34(02):122-131.
Zhan Z Z, Ye Z, Tian P, et al. Numerical study on aerodynamic noise of airfoil trailing edge based on DES model[J]. Thermal power engineering, 2019, 34(02):122-131.
[12] 郝文星, 李春, 丁勤卫等. 自适应襟翼流动分离控制数值研究[J]. 中国电机工程学报, 2019, 39(02):536-542.
Hao W X, Li C, Ding Q W, et al. Numerical study on flow separation control of adaptive flap [J]. Chinese Journal of Electrical Engineering2019, 39(02):536-542.
[13] Zenger F , Herold G , Becker S . Acoustic Characterization of Forward- and Backward-Skewed Axial Fans Under Increased Inflow Turbulence[J].AIAA Journal,2017, 55(4):1241-1250.
[14] Wasala S H , Storey R C , Norris S E , et al. Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145:17-29.
[15] 李运志,高志鹰,汪建文等.基于SONAH的水平轴风力机风轮噪声源识别[J].工程热物理学报,2014,35(07):1334-1337.
Li Y Z, Gao Z Y, Wang J W, et al. Noise source identification of horizontal axis wind turbine based on SONAH[J]. Journal of Engineering Thermophysics, 2014,35(07):1334-1337.
[16] 陆贇韬. 物面振动对机翼气动噪声的影响研究[D].南京航空航天大学,2017.
Lu Y T, Study on the influence of the surface vibration on the aerodynamic noise of the wing[D]. Nanchang Hangkong University,2017.
[17] Ma J L Duan Y F, Zhao M, et al. Effect of Airfoil Concavity on Wind Turbine Blade Performances[J]. Shock and Vibration, 2019, 2019:1-11.
[18] 马剑龙,霍德豪,段亚范等.基于翼型凹变的叶片结构动力学性能优化方法研究[J].振动与冲击,2019,38(08):36-41.
Ma J L, Huo D H, Duan Y F, et al. Research on optimization method of dynamic performance of blade structure based on airfoil concave variation[J]. Vibration and Shock,2019,38(08):36-41.

PDF(2054 KB)

263

Accesses

0

Citation

Detail

段落导航
相关文章

/